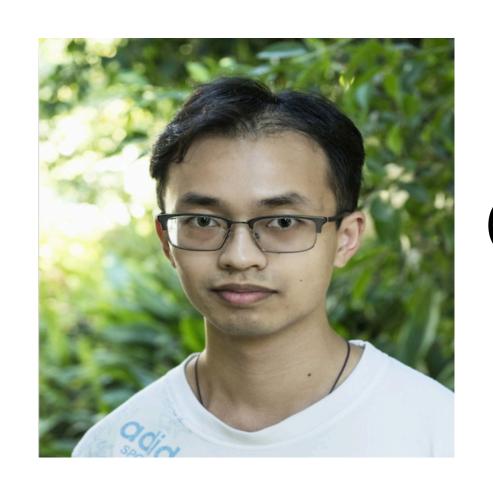


Almost linear time private release of synthetic graphs

Zongrui Zou Nanjing University

Joint work with

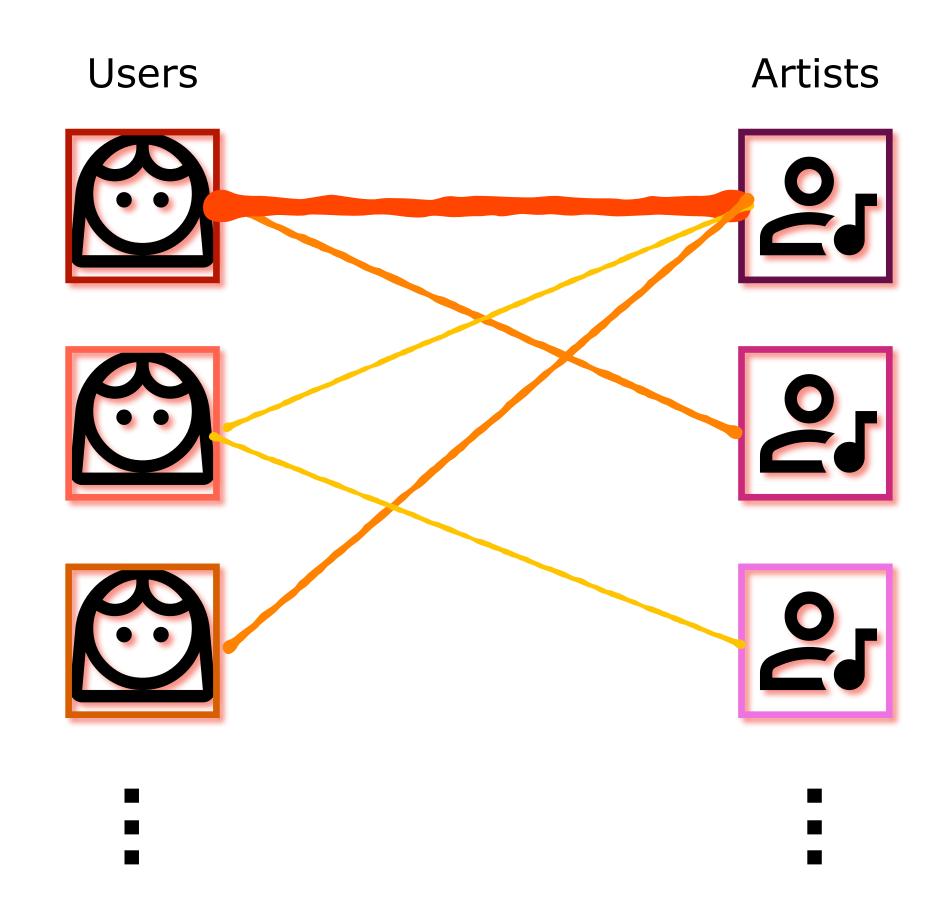


Jingcheng Liu (Nanjing University)

Jalaj Upadhyay (Rutgers)

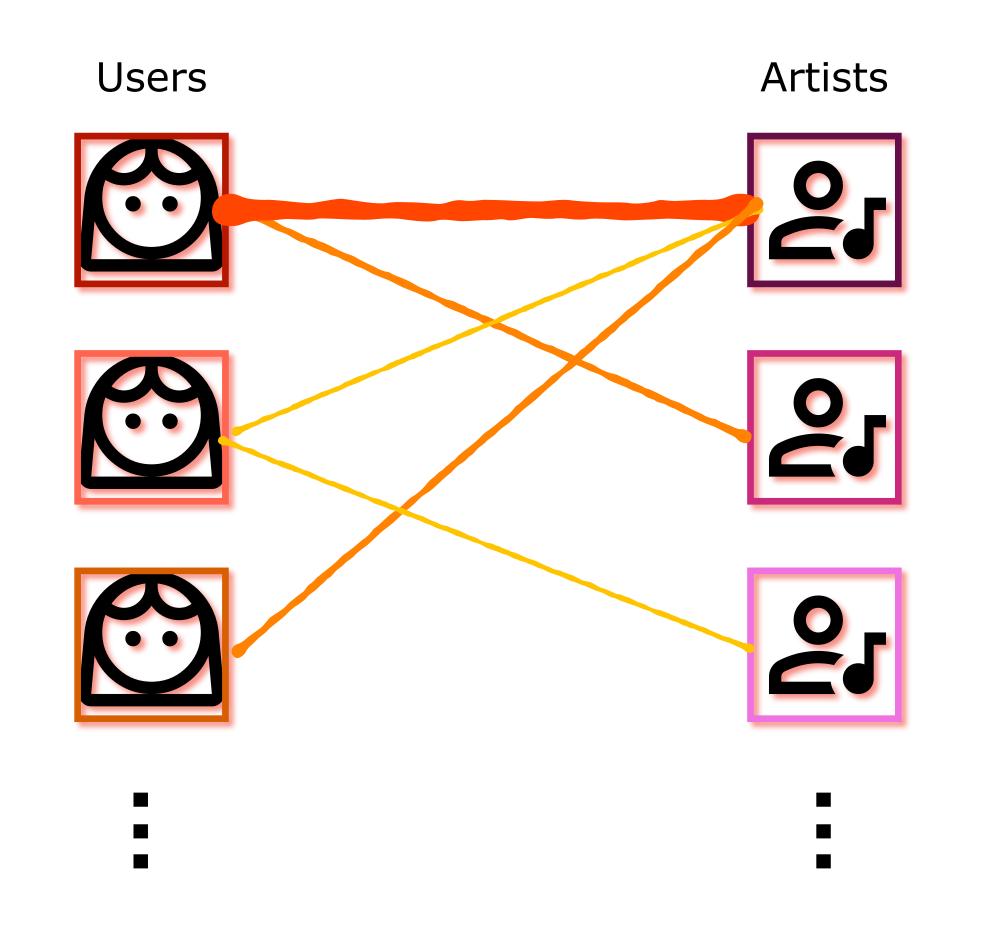
Artificial Intelligence and Statistics 2025

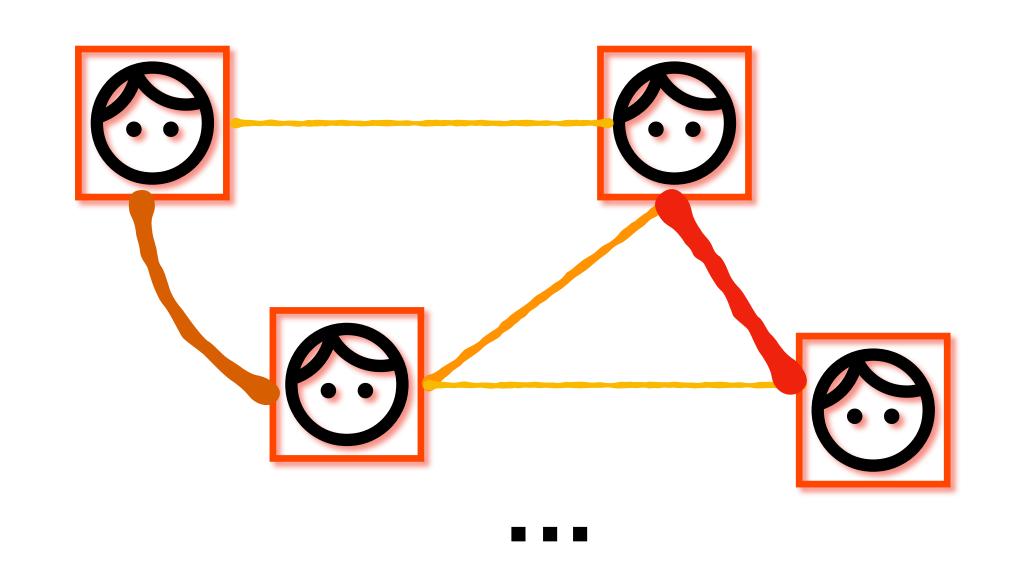
Sensitive data encoded by weighted graphs



The bipartite graph for user preferences in some music app (weighted edges represent "preference")

Sensitive data encoded by weighted graphs

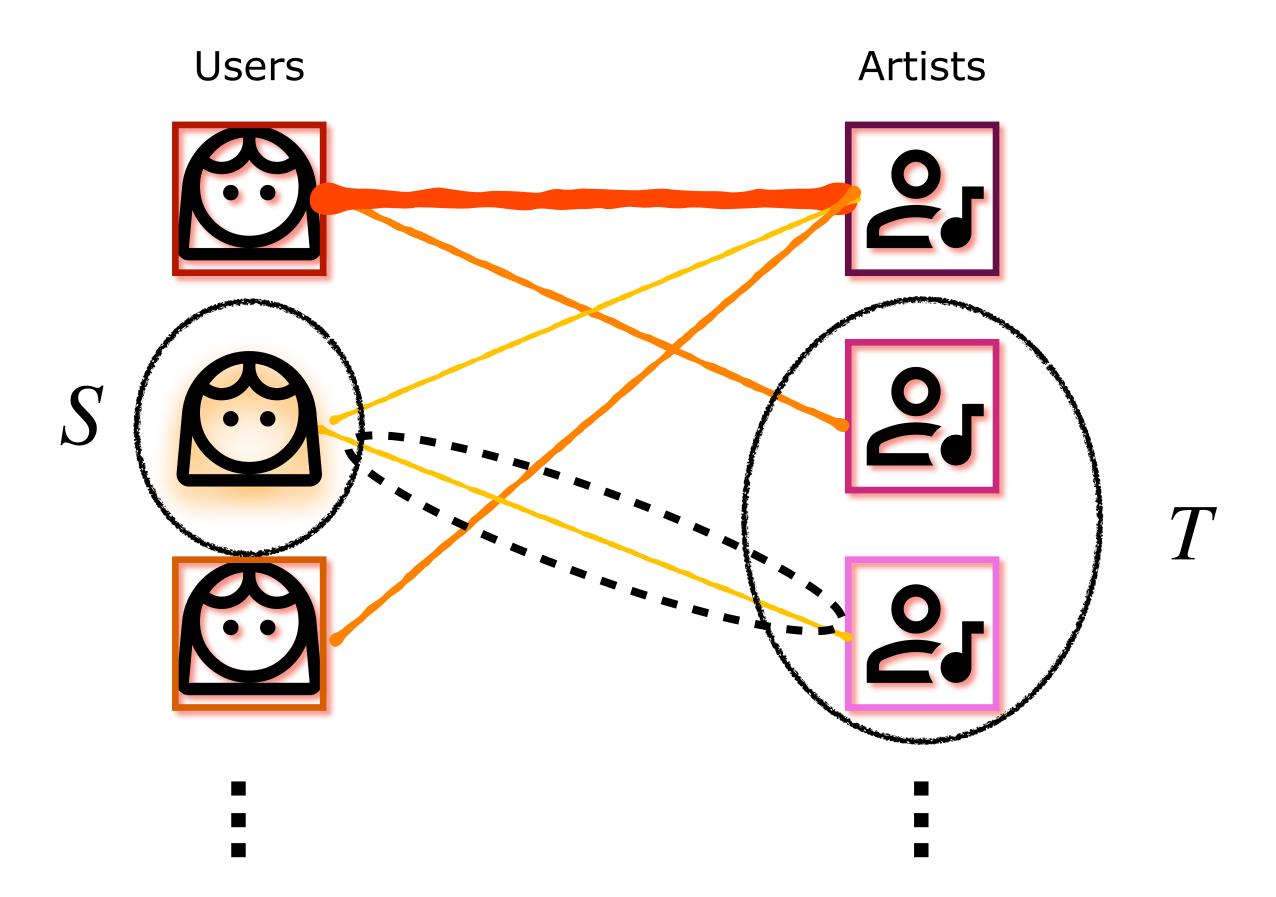




Typical social networks (weighted edges represent "interaction frequency")

The bipartite graph for user preferences in some music APP (weighted edges represent "preference")

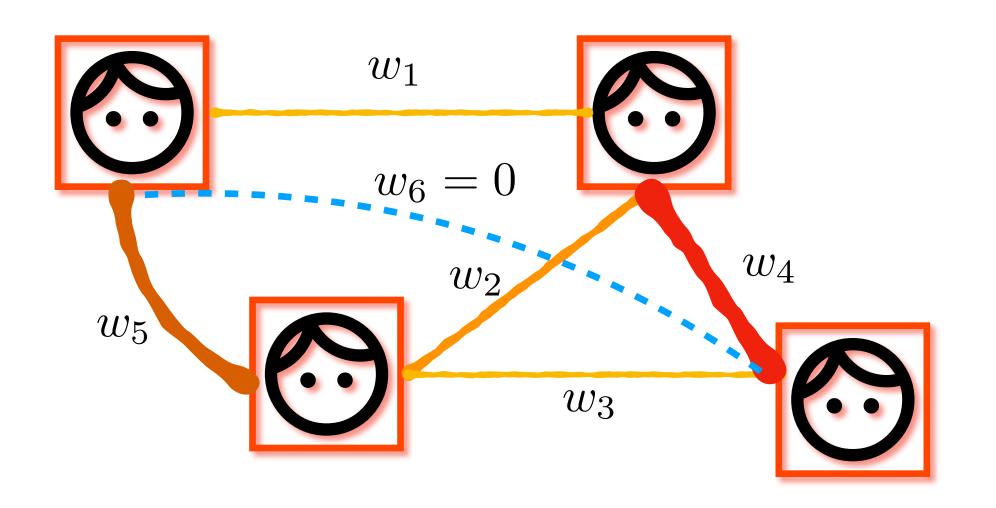
Cut queries in graph data



In this bipartite graph, the cut queries asks:

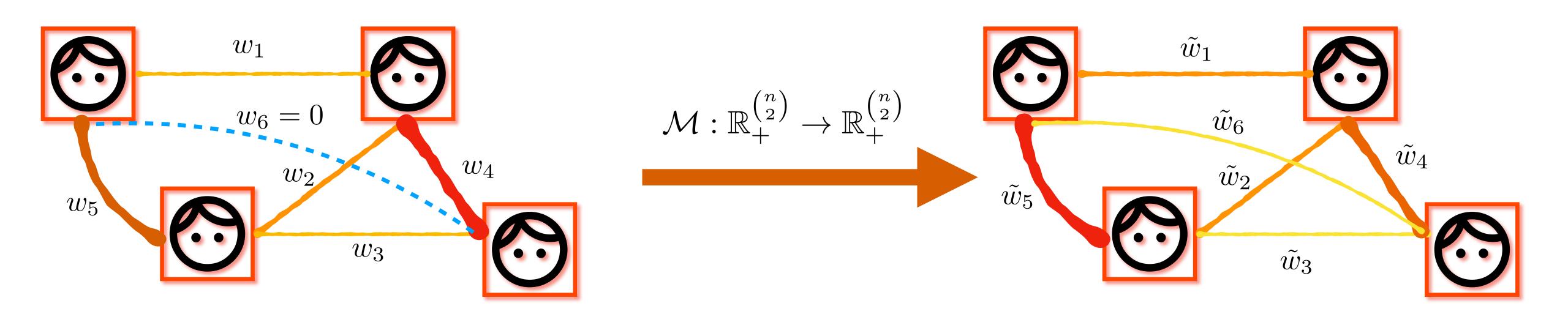
"How much a specific user favors a specific group of artists?"

Private synthetic graph



Undirected graph G = (V, E, w) n vertices, m edges Unweighted maximum degree Δ

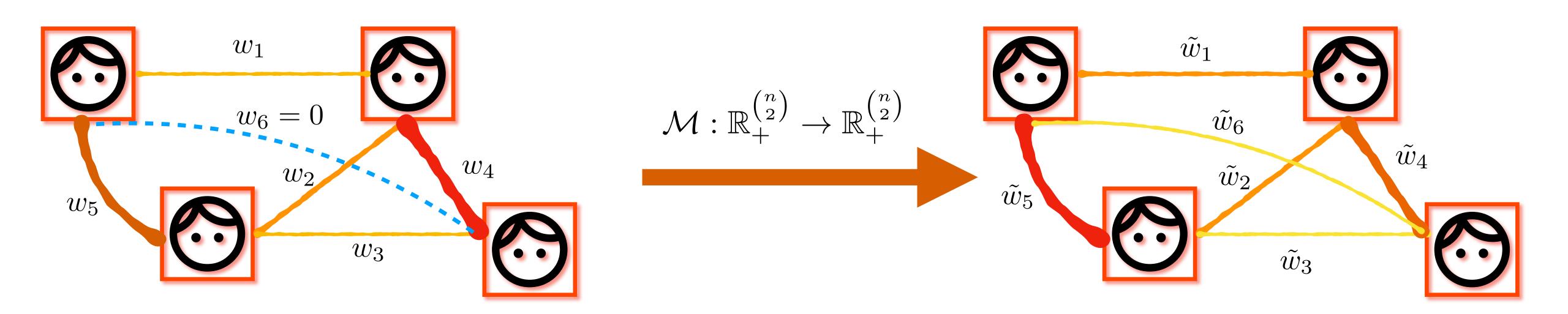
Private synthetic graph



Undirected graph G = (V, E, w) n vertices, m edges Unweighted maximum degree Δ

A synthetic graph G' = (V, E', w') (does not necessarily have same topology)

Private synthetic graph



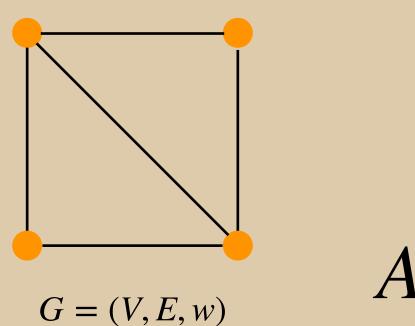
Undirected graph G = (V, E, w) n vertices, m edges Unweighted maximum degree Δ

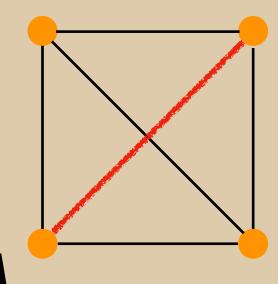
A synthetic graph G' = (V, E', w') (does not necessarily have same topology)

- •**Privacy**: \mathcal{M} should be differentially private.
- •**Utility**: G' maintains certain algebraic (i.e., spectrum) and combinatorial properties (i.e., cut function) of G.

Graph differential privacy

Neighboring graphs





G' = (V, E', w')

G and G' are neighboring if and only if $\|w - w'\|_0 \le 1$ and $\|w - w'\|_\infty \le 1$.

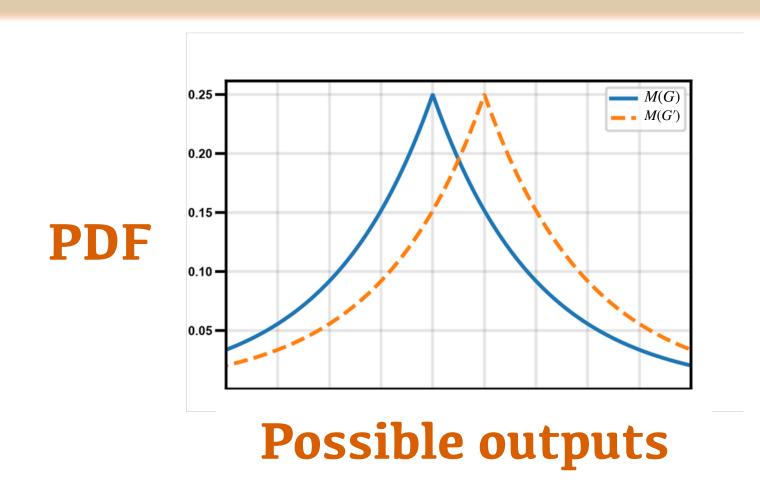
• $w \in \mathbb{R}^{\binom{n}{2}}$ encodes the edge weights.

The goal is to make any pair of neighboring datasets **indistinguishable** from reading their private copies.

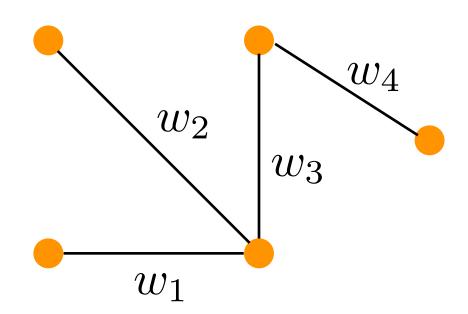
Differential privacy

A randomized mechanism M outputting a synthetic graph is (ε, δ) -differentially private if for any pair of neighboring graphs G, G' and any subset $S \subseteq \mathbb{R}^{\binom{n}{2}}$, $\Pr[M(G) \in S] \leq e^{\varepsilon} \cdot \Pr[M(G') \in S] + \delta$.

- Here, $\varepsilon > 0$ and $0 \le \delta \le 1$;
- If $\delta = 0$, the mechanism preserves **pure** differential privacy.
- Unless specified, we set $\varepsilon = O(1)$ and $\delta = 1/n^c$.

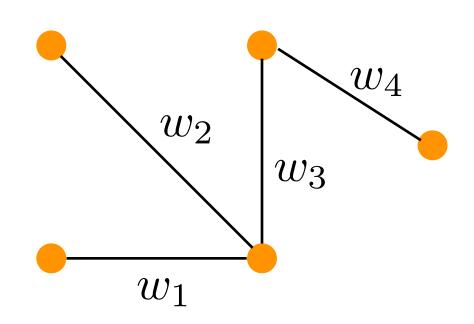


The classical approach

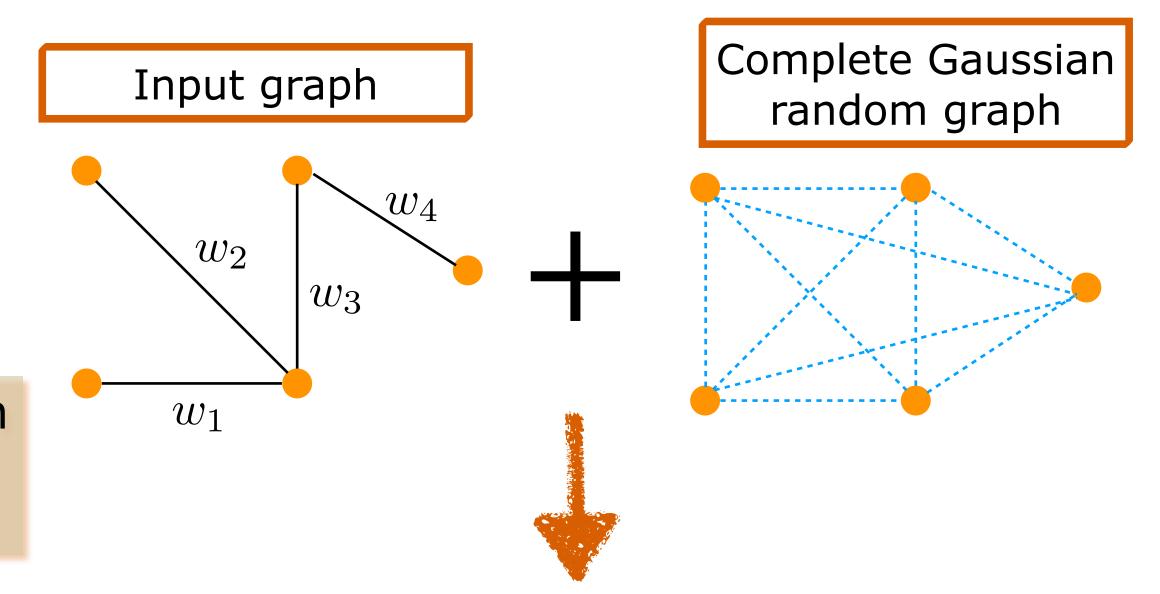


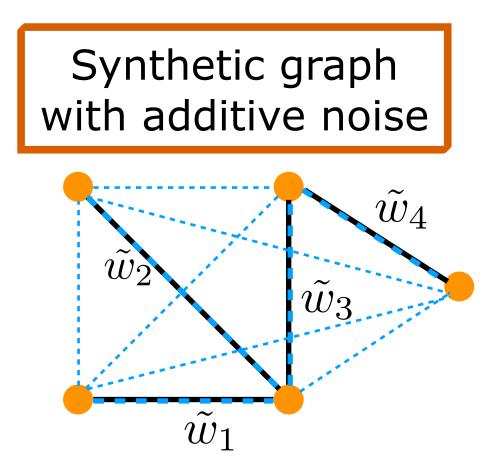
For an undirected graph G = ([n], E, w), a neighboring graph could differ in any of the $\binom{n}{2}$ pair of vertices.

The classical approach

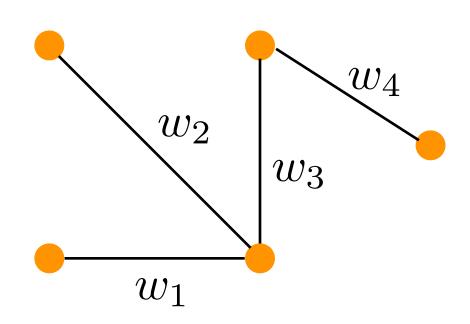


For an undirected graph G = ([n], E, w), a neighboring graph could differ in any of the $\binom{n}{2}$ pair of vertices.

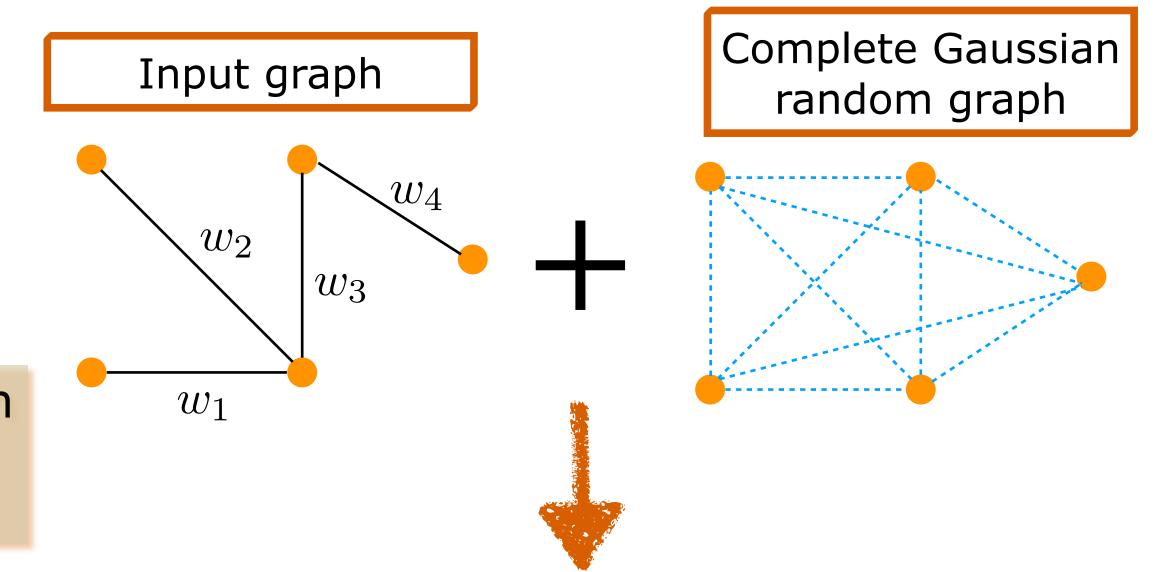




The classical approach



For an undirected graph G = ([n], E, w), a neighboring graph could differ in any of the $\binom{n}{2}$ pair of vertices.

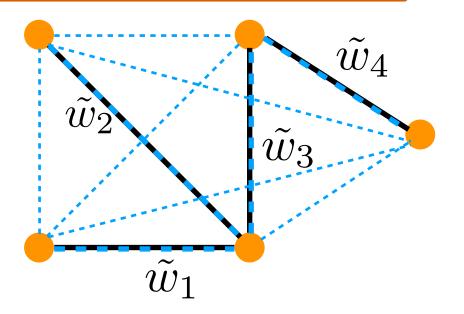


- $\tilde{O}(n^{1.5})$ error for cut is **inevitable** ([Eliáš, Kapralov, Kulkarni and Lee 2020]) even for **sparse graphs**.
- Running time: $O(n^2)$
- The output is dense no matter the sparsity of the input.

[Liu, Upadhyay, **Zou** 2024]

Private Topology Selection [EKKL20] Instance optimal error: $\tilde{\Theta}\left(\sqrt{mn}\right)$ $O(n^7)$ running time

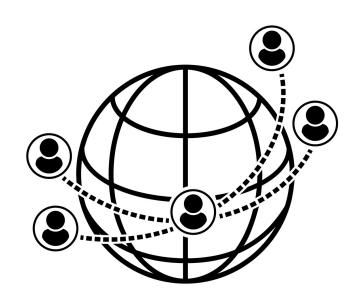
Synthetic graph with additive noise



The real-world graphs are usually sparse

♦ Facebook messenger is another undirected graph with about 3×10^9 users in 2022 and a total about 5×10^{12} messages exchanged in the year 2022.

♦ Chase Bank has approximately **18 million accounts** and 16,000 ATMs, while the total number of ATM transactions done in 2021 is about **600 million**.

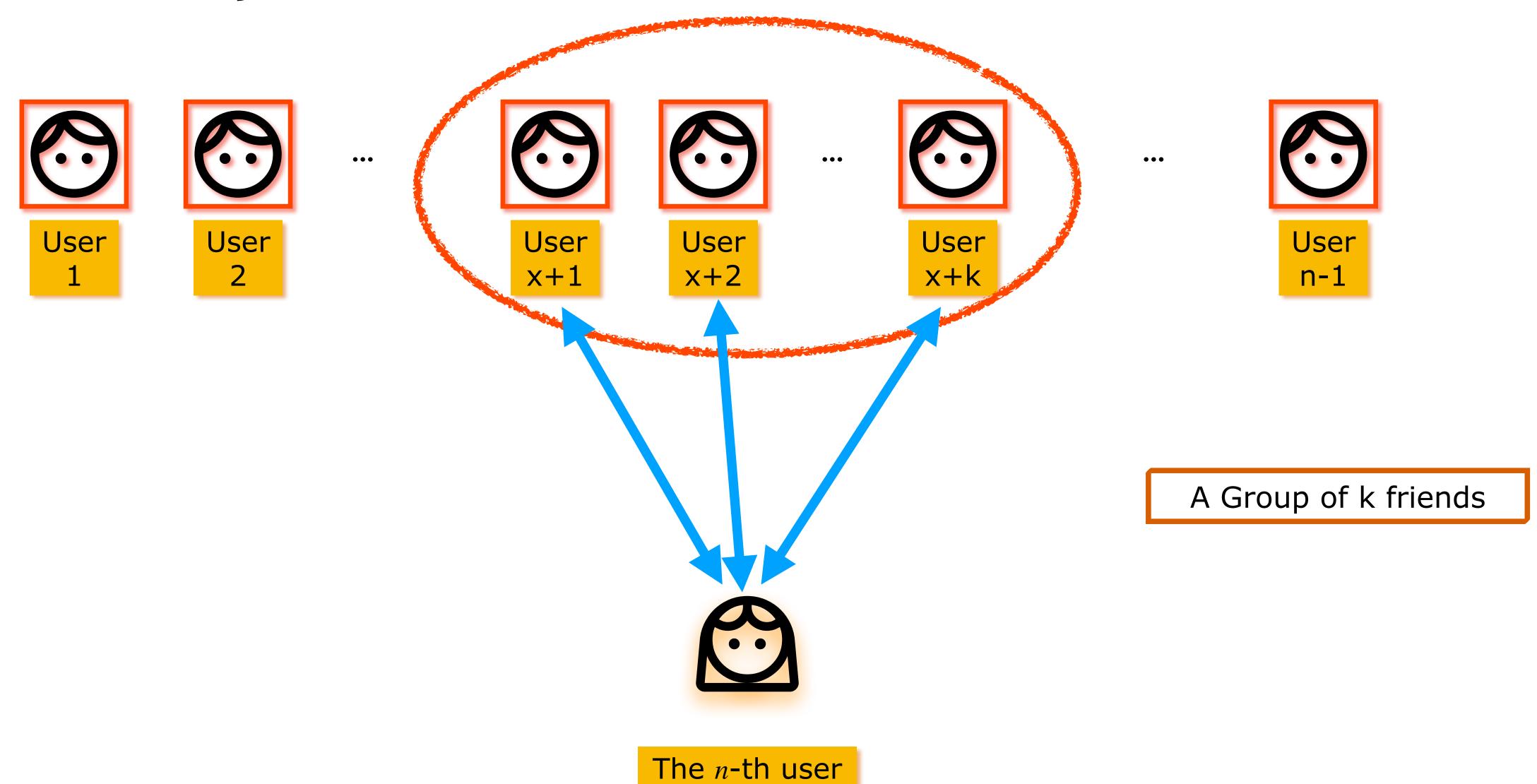


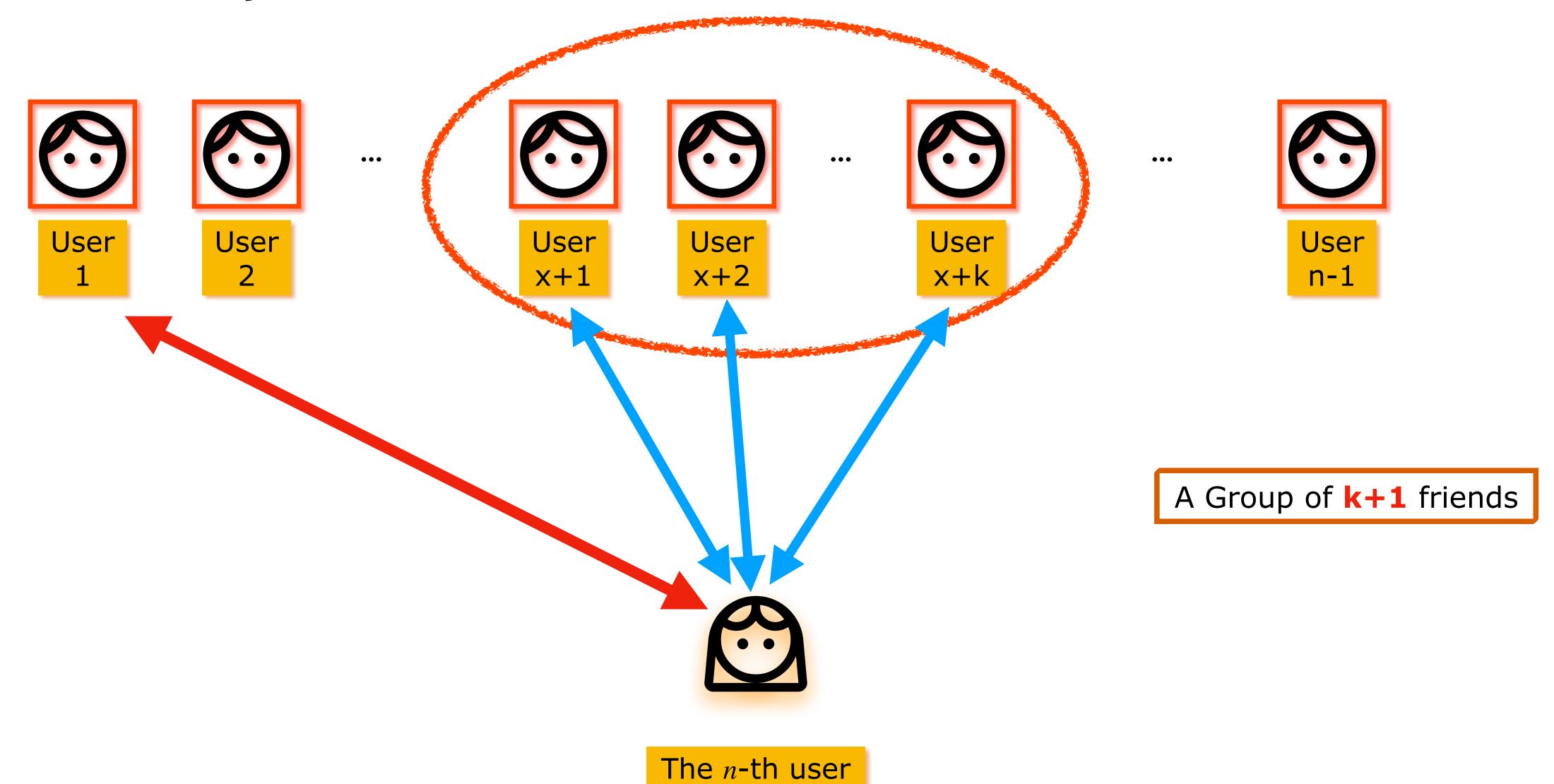
♦ Internet Activity Graph currently has 4.3 billion active IP address, which is a typical sparse graph because the number of connections between nodes (websites, servers, etc.) is much smaller than the number of possible connections.

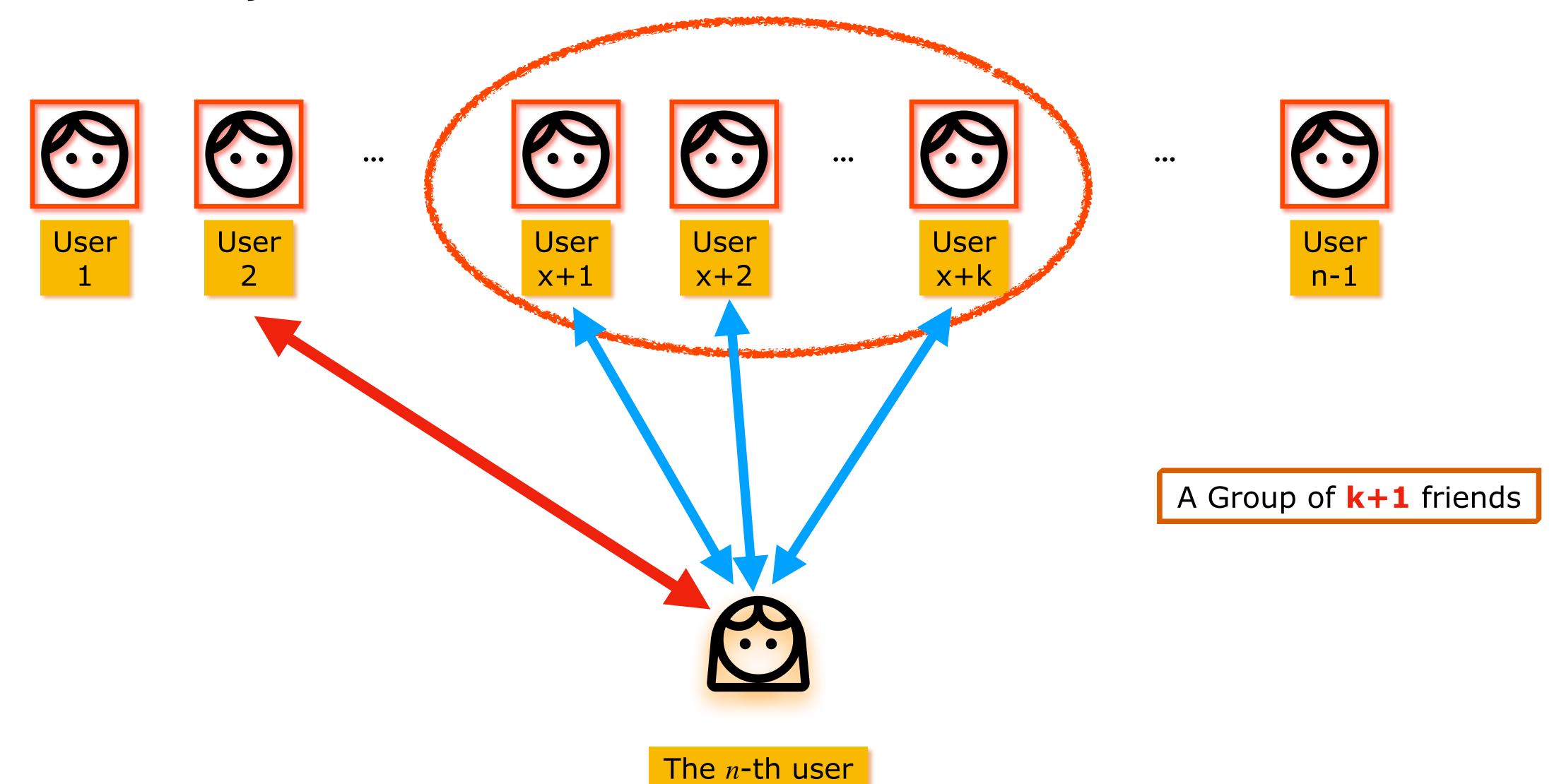
Efficient and private graph release?

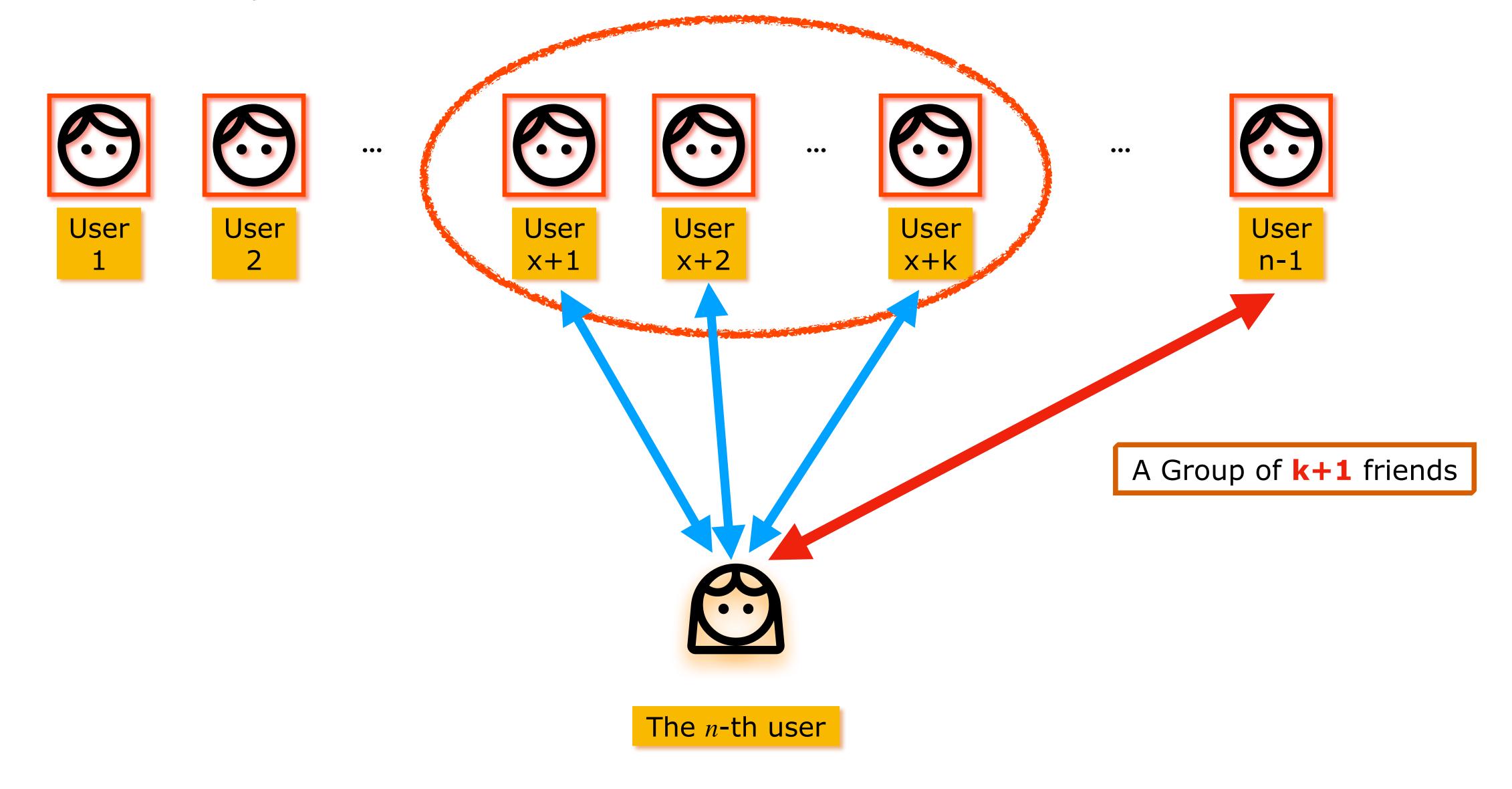
```
    Question: Is it possible to release a useful and private graph such that:

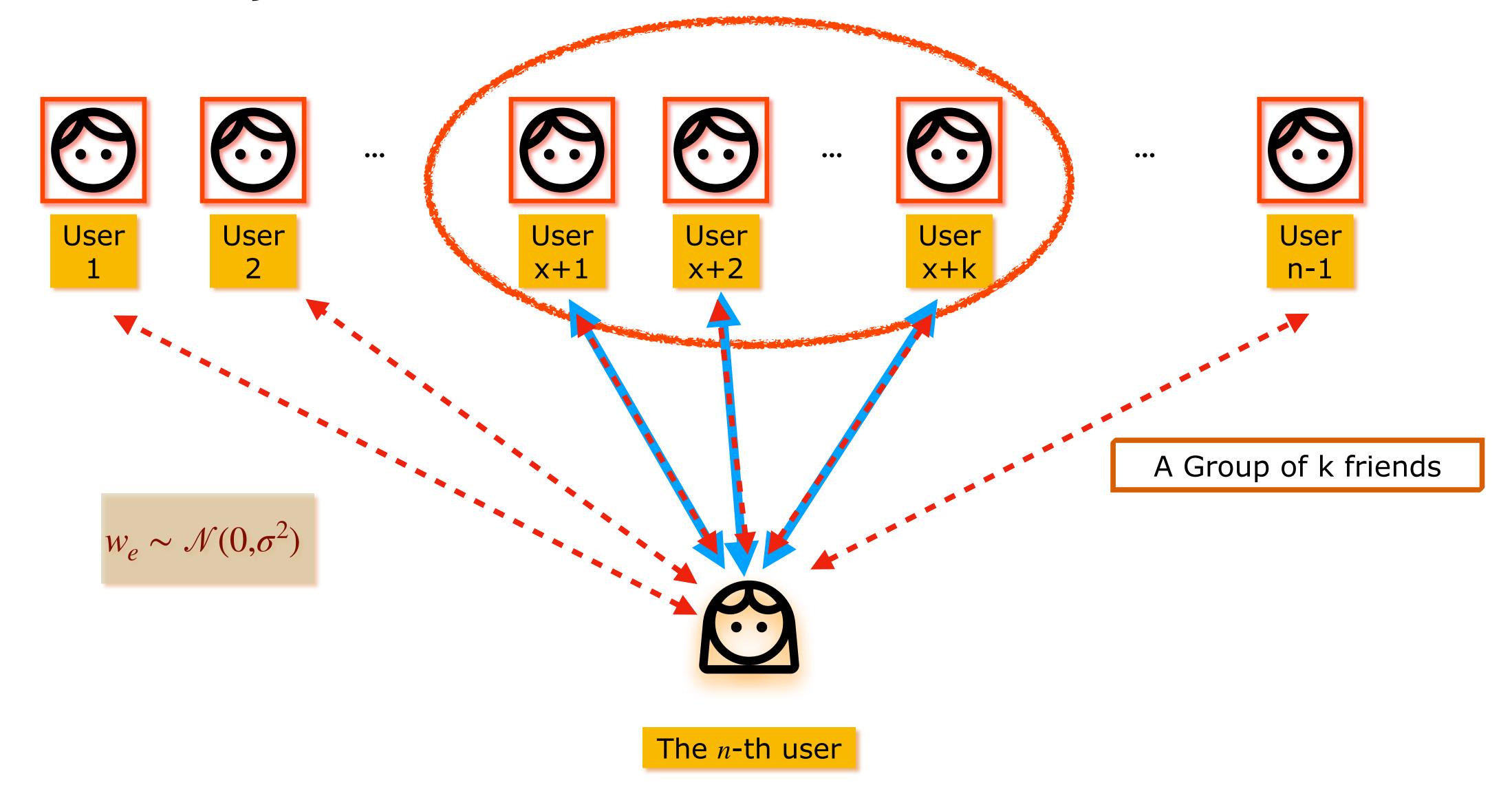
            (i) The computation time & space required is comparable to the non-private setting;
            (ii) The output graph is still sparse if the input graph is sparse.
```



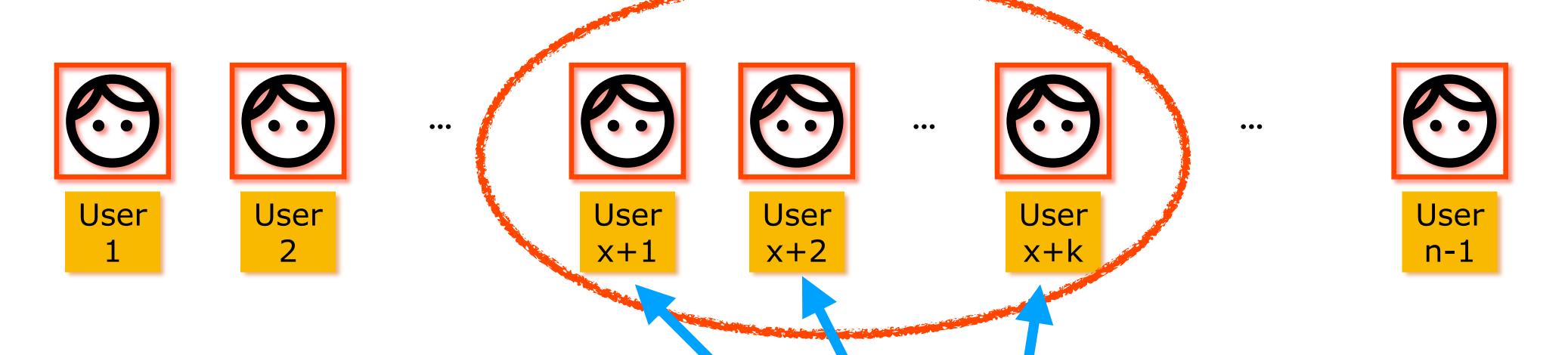








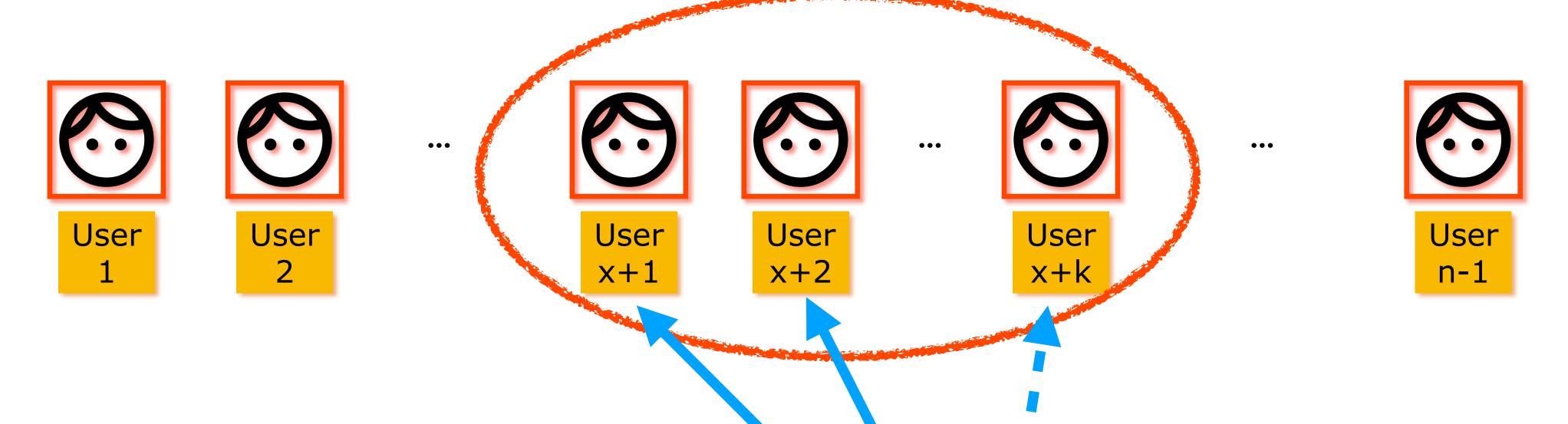
Beyond additive noise mechanism — perturbing edges by random walk



- For the sake of simplicity, suppose k is public;
- Consider a random work on $\binom{[n-1]}{k}$.

The *n*-th user

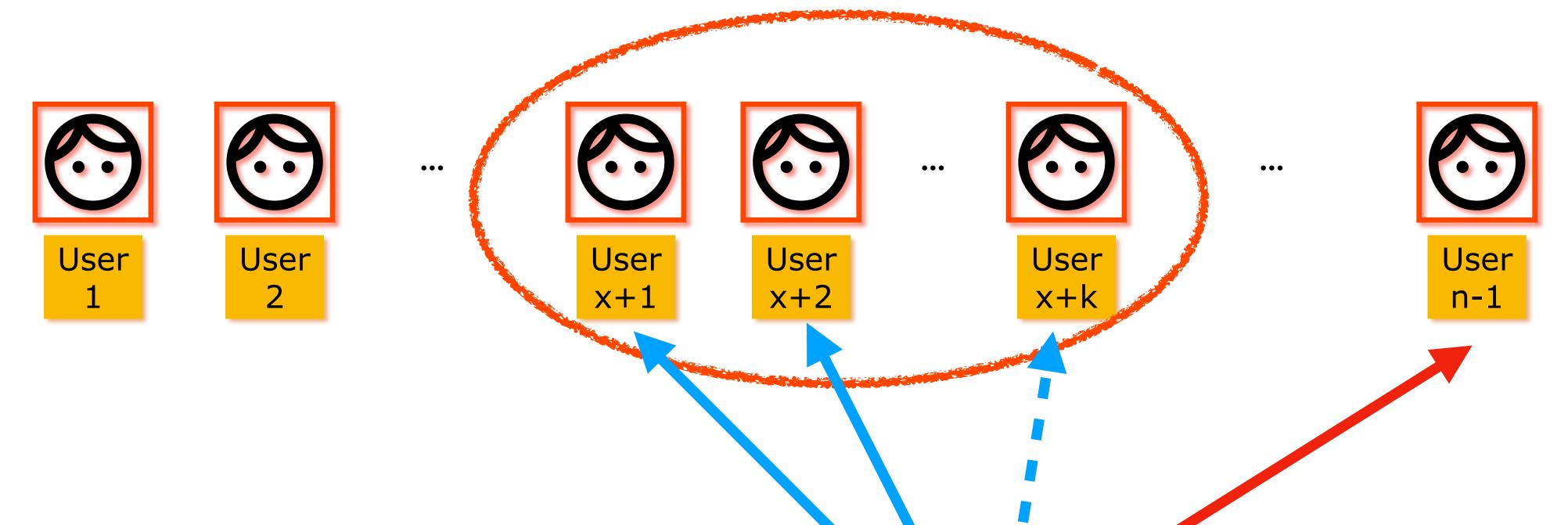
Beyond additive noise mechanism — perturbing edges by random walk



- For the sake of simplicity, suppose k is public;
- Consider a random work on $\binom{[n-1]}{k}$.

The *n*-th user

Beyond additive noise mechanism — perturbing edges by random walk



- For the sake of simplicity, suppose k is public;
- Consider a random work on $\binom{[n-1]}{k}$.

The *n*-th user

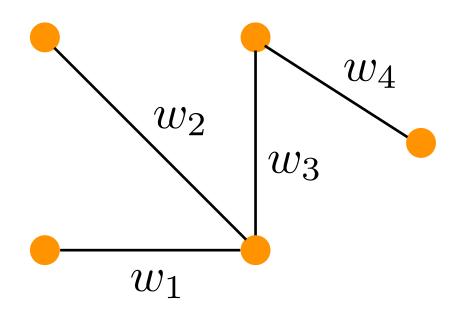
A Target distribution on graph topology

Given number of edges m, we sample from all undirected graphs with k edges approximately according to:

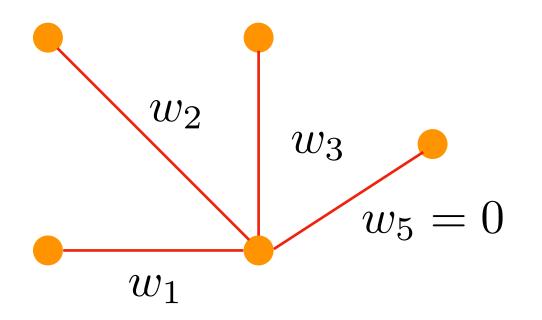
$$\forall S \in \{0,1\}^{\binom{n}{2}} \land |S| = k, \Pr[S] \propto \prod_{e \in S} \exp(\varepsilon \cdot w_e)$$

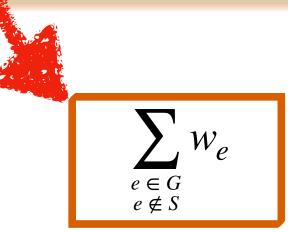
One can verify that this is equivalent to running exponential mechanism on such set of topologies with the utility function $f(G,S) = \|G - G\|S\|_1$.

Input graph G

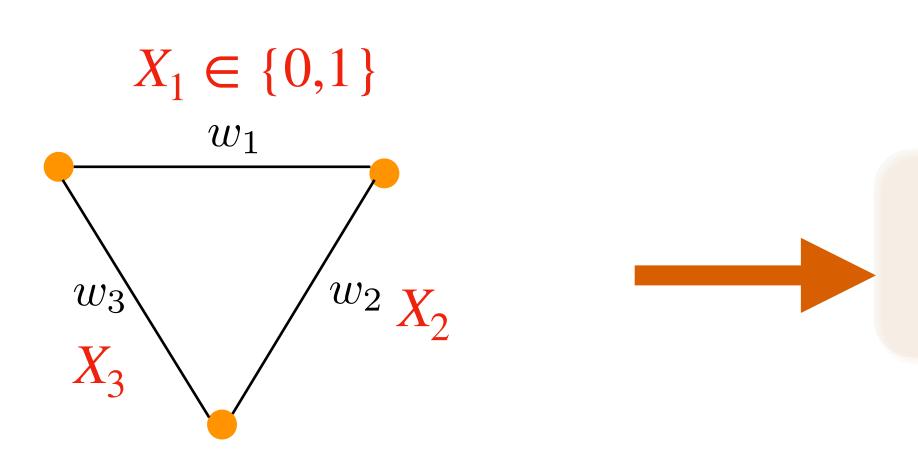


G|S, the restriction of G on S





Sampling from the target distribution



A distribution on $\{0,1\}^n$

$$\forall X \in \{0,1\}^{\binom{n}{2}} \land |X| = k, \Pr[X] \propto \prod_{e \in X} \exp(\varepsilon \cdot w_e)$$

Fact: There exists an $O(n^2m)$ time algorithm for exact sample by dynamic programming.

$$\Pr[X_e = 1] = \frac{\exp(\varepsilon w_e)}{1 + \exp(\varepsilon w_e)}$$

Question: If allow approximate sampling, could we do faster than $O(n^2m)$ or $O(n^2)$?

Yes! We can do it in almost linear time $\tilde{O}(m)$.

Markov Chain Monte Carlo

Photoed in Piscataway, NJ

Markov Chain Monte Carlo

Photoed in Piscataway, NJ

$$\{X_t \mid t \in T\}$$

$$X_t \in \mathbf{\Omega}$$

time t state space Ω

state $x \in \Omega$

 ${X = {0,1}^{\binom{n}{2}} | nnz(X) = k}$

All size k subsets of $\binom{n}{2}$

Markov Chain Monte Carlo

$$\{X_t \mid t \in T\}$$

$$X_t \in \mathbf{\Omega}$$

time t

state space Ω

state $x \in \Omega$

$${X = {0,1}^{\binom{n}{2}} | nnz(X) = k}$$

All size k subsets of $\binom{n}{2}$

Stochastic process over size k subsets: $X_0 \leftarrow E, X_1, \dots, X_t$

 X_{i+1} only depends on X_i

The real edge set E

Edge set E_t in time t

Markov Chain Monte Carlo

$$\{X_t \mid t \in T\}$$

$$X_t \in \mathbf{\Omega}$$

time t

state space Ω

state $x \in \Omega$

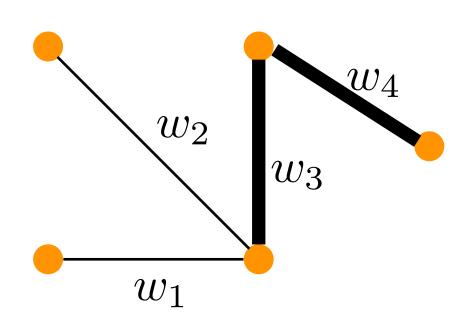
$${X = {0,1}^{\binom{n}{2}} | \mathbf{nnz}(X) = k}$$

All size k subsets of $\binom{n}{2}$

Stochastic process over size k subsets: $X_0 \leftarrow E, X_1, \dots, X_t$

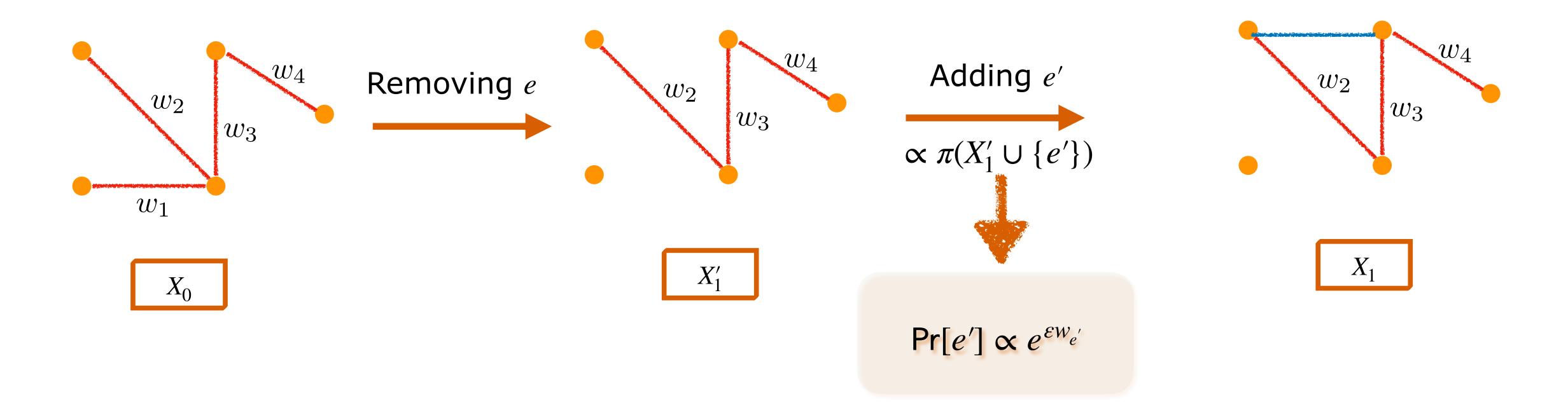
 X_{i+1} only depends on X_i

$$\Pr[X_t] \propto \prod_{e \in X_t} \exp(\varepsilon \cdot w_e)$$

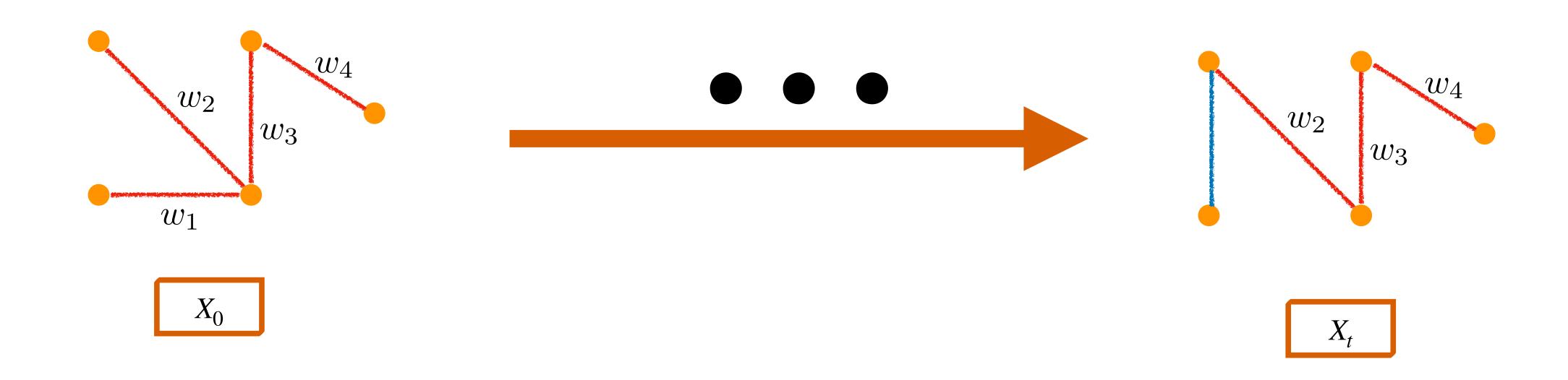


Basis-exchange sampling

Input graph



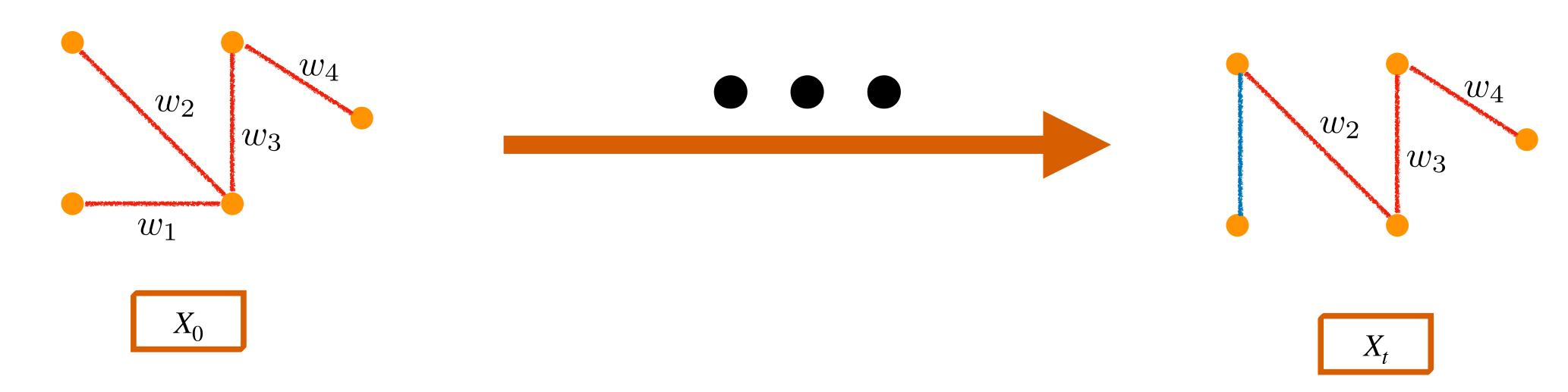
Basis-exchange sampling



Facts 1: When $t = \infty$, $X_t \sim \pi$.

Facts 2: (Rapid mixing) When $t = \Omega(k \ln(1/\delta))$, X_t and X_{∞} has total variation distance $\leq \delta$ (derived from strong log-concavity).

Basis-exchange sampling



♦ Theorem (almost linear time sampler)

For any $\varepsilon > 0$, there is a sampler $\mathsf{TS}_\varepsilon : \mathbb{N} \times \mathbb{R}^N_+ \to 2^{[N]}$ such that for any given integer $k \leq N$ and an undirected graph G on n vertices, it outputs an edge set of size k in time $\tilde{O}(k)$ approximately according to distribution

$$\forall S \in \{0,1\}^{\binom{n}{2}} \land |S| = k, \pi(S) \propto \prod_{e \in S} \exp(\varepsilon \cdot w_e)$$

Almost linear time
Approximate DP
algorithm!

Our results on private cut & spectral approximation

Method	Additive error	Preserve sparsity?	Purely additive error?	Run-time
JL transformation [BBDS12]	$O\left(\frac{\sqrt{n}\log(n/\delta)}{\varepsilon}\right)$	No	No	$O(n^3)$
Analyze Gauss [DR14]	$O\left(\frac{\sqrt{n}\log(n/\delta)}{\varepsilon}\right)$	No	Yes	$O(n^2)$
Topology Sampler [LUZ24]	$O\left(\frac{\Delta \log^2(n)}{\varepsilon}\right)$	Yes	Yes	$O(n^2 \mid E \mid \Delta)$
This paper	$O\left(\frac{\Delta \log(n/\delta)}{\varepsilon}\right)$	Yes	Yes	$\tilde{O}(E)$

Private Graph Spectrum
Approximation (Δ: maximum unweighted degree)

Our results on private cut & spectral approximation

Method	Additive error	Preserve sparsity?	Purely additive error?	Run-time
Exponential mechanism	$O\left(\frac{n\log n}{\varepsilon}\right)$	Yes	No	Intractable
JL transformation [BBDS12]	$O\left(\frac{n^{1.5} \cdot polylog(n)}{\varepsilon}\right)$	No	No	$O(n^3)$
Analyze Gauss [DR14]	$O\left(\frac{n^{1.5} \cdot polylog(n)}{\varepsilon}\right)$	No	Yes	$O(n^2)$
Mirror Descent [EKKL20]	$O\left(\frac{n\sqrt{W}\cdotpolylog(n)}{arepsilon}\right)$	No	Yes	$\tilde{O}(n^7)$
Topology Sampler [LUZ24]	$O\left(\frac{n \cdot polylog(n)}{\varepsilon}\right)$	Yes	Yes	$\tilde{O}(n^7)$
This paper	$O\left(\frac{n \cdot polylog(n)}{\varepsilon}\right)$	Yes	Yes	$\tilde{O}(n)$

Private Graph Cut Approximation on sparse graphs $(m \sim n \cdot polylog(n))$

Some further questions

• For private cut approximation, is it possible to achieve the instance **optimal** error bound $O(\sqrt{mn})$ with linear time algorithms?

 Is there other applications of MCMC method in the designation of efficient differentially private algorithms?