LITE: Efficiently Estimating Gaussian Probability of Maximality

Nicolas Menet^{1,2}, Jonas Hübotter¹, Parnian Kassraie¹, Andreas Krause¹

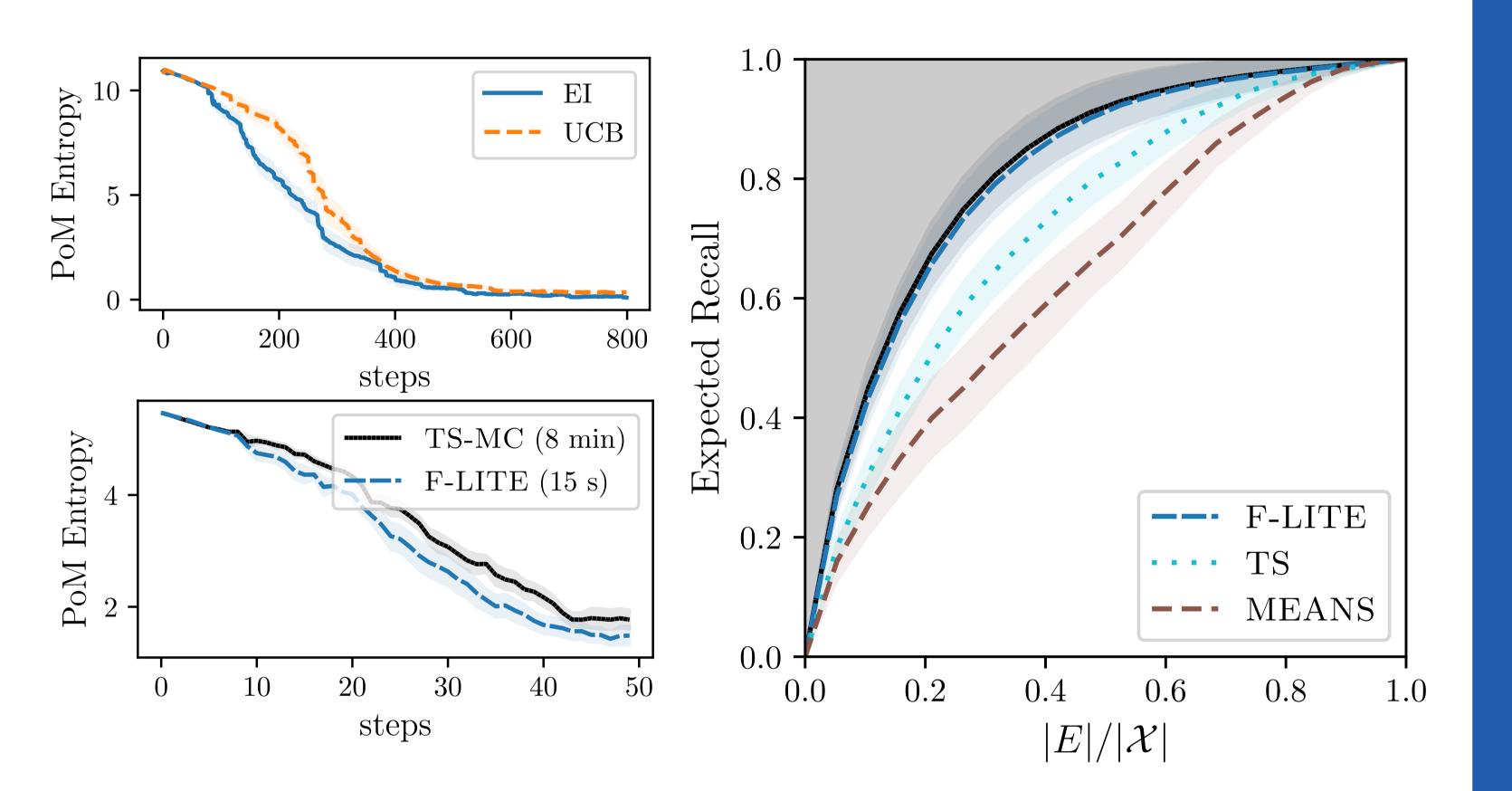
ETH zürich

¹ ETH Zürich, ² IBM Research Zurich

Motivation

The probability of maximality of Gaussian vectors $\mathbb{P}\left[F_{\chi} = \max_{z \in \mathcal{X}} F_{z}\right] \text{ occurs in Thompson sampling,}$

Entropy Search, entropy estimation, and inverse reinforcement learning, but was poorly understood and very expensive to compute, scaling in $\theta(|\mathcal{X}|^4)$.



Method

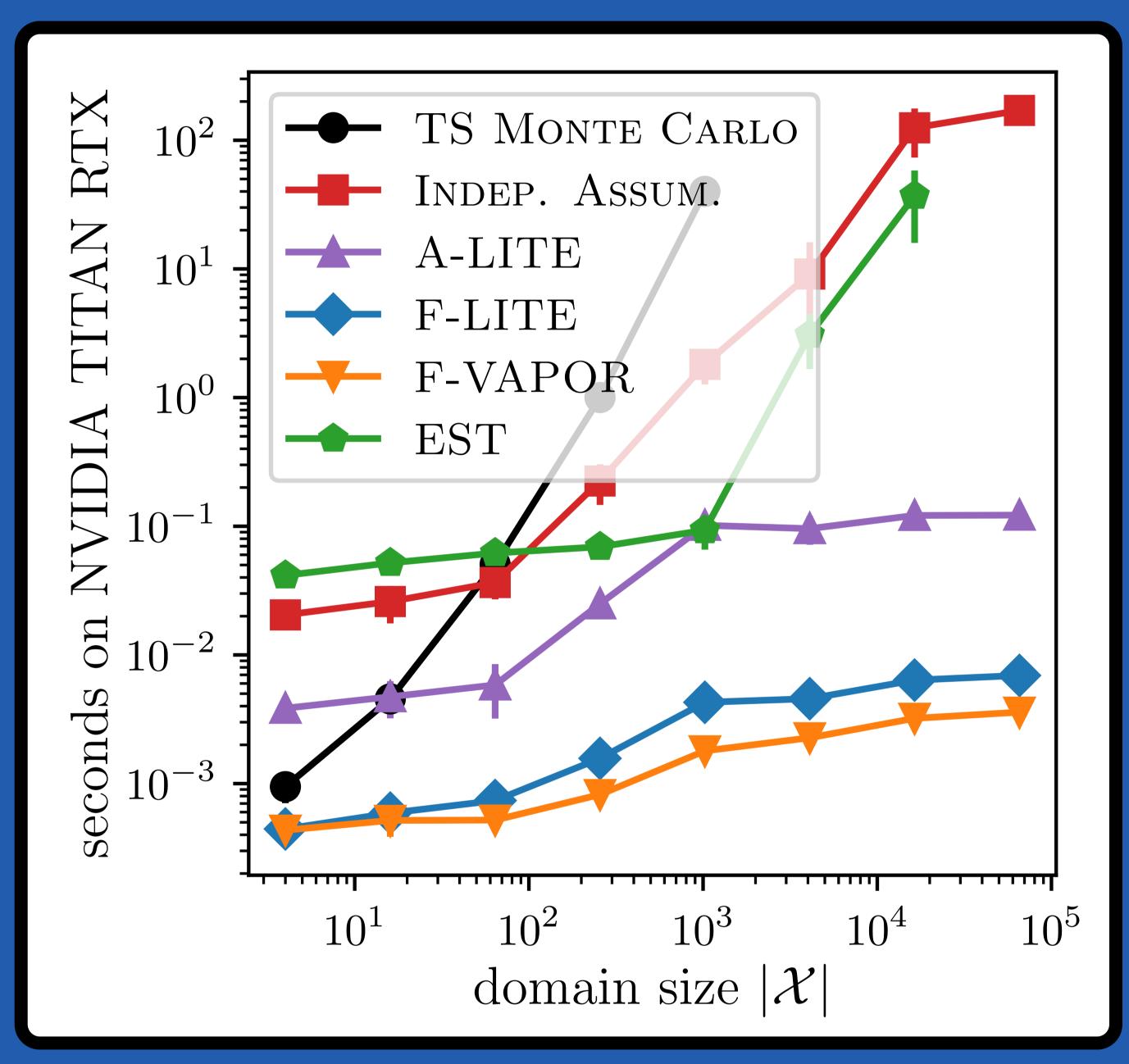
- 1. By adopting an *independence assumption* on the Gaussian entries, we simplify from an $|\mathcal{X}|$ -dimensional to a one-dimensional integral.
- 2. To avoid costly numerical integration, we approximate the integrand, which is a CDF, with the CDF of a standard normal and fit m_x and s_x .

$$\tilde{p}_{x} = \mathbb{P}[\tilde{F}_{z} \leq \tilde{F}_{x} \ \forall z \neq x] = \mathbb{E} \prod_{z \neq x} \mathbb{P}[\tilde{F}_{z} \leq \tilde{F}_{x} \ | \ \tilde{F}_{x}] \quad (1)$$

$$\approx \mathbb{E}\Phi\left(\frac{\tilde{F}_{x} - m_{x}}{s_{x}}\right) = \Phi\left(\frac{\mu_{F_{x}} - m_{x}}{\sqrt{\sigma_{F_{x}}^{2} + s_{x}^{2}}}\right) \quad (2)$$

- A-LITE uses quartile matching to fit the free parameters m_{χ} and s_{χ} .
- F-LITE sets $s_x = 0$ (extreme-value theorem) and uses the normalization condition to find $m_x = \kappa^*$.

An almost-linear time estimator of Gaussian probability of maximality that outperforms prior work in accuracy and runtime.



Theoretical Insights

Proposition 4. Define the variational objective

$$\mathcal{W}(p) := \sum_{x \in \mathcal{X}} p_x \cdot \left(\mu_{F_x} + \underbrace{\sqrt{2\tilde{I}(p_x)} \cdot \sigma_{F_x}}_{exploration \ bonus} \right), \quad (5)$$

with the quasi-surprisal $\tilde{I}(u) := (\phi(\Phi^{-1}(u))/u)^2/2$. Then the maximizer of W among elements of the probability simplex is given by F-LITE, i.e., by q with

$$q_x := \Phi\left(\frac{\mu_{F_x} - \kappa^*}{\sigma_{F_x}}\right) \text{ with } \kappa^* \text{ s.t. } \sum_{x} q_x = 1.$$

TV-Distance	Synthetic Distributions	1-dim GP	2-dim GP (E.2)	DropWave (E.3)	Quadcopter
EST	11.54 ± 0.20	45.6 ± 2.7	15.1 ± 1.2	5.17 ± 0.64	14.3 ± 2.0
VAPOR	9.89 ± 0.11	37.0 ± 2.0	15.7 ± 1.0	5.70 ± 0.72	17.2 ± 2.5
F-LITE (ours)	4.65 ± 0.08	13.7 ± 1.0	10.9 ± 0.7	$\boldsymbol{4.87 \pm 0.60}$	11.1 ± 1.4
A-LITE (ours)	3.76 ± 0.06	14.1 ± 1.0	7.5 ± 0.5	$\boldsymbol{4.32 \pm 0.53}$	8.7 ± 0.9
INDEP. ASSUM.	0.00 ± 0.00	6.7 ± 0.4	6.6 ± 0.2	3.85 ± 0.54	9.0 ± 1.0