

Distributional Counterfactual Explanations With Optimal Transport

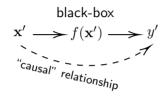
Lei You, Ph.D.

Assistant Professor in Applied Mathematics

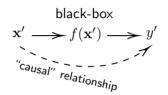
Department of Engineering Technology

Technical University of Denmark (DTU)

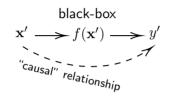
Counterfactual Explanations

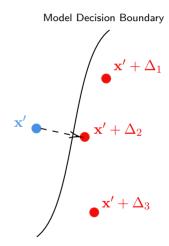


Counterfactual Explanations

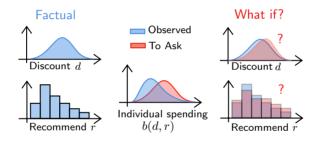


Counterfactual Explanations



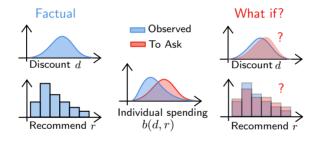


Distributional Counterfactual Explanations (DCE)



Consider a business that uses an ML model b to forecast revenue. Given any observed model outputs, the business wants to know how shifting the overall distributions of d and r would change predictions towards another pattern.

Distributional Counterfactual Explanations (DCE)



To answer this "what-if" question, the counterfactual d and r should resemble the observed factual d and r for practical and actionable changes.

Preliminaries of Optimal Transport (OT)

OT and the Wasserstein Distance. The one-dimensional (1D) squared 2-Wasserstein distance is defined as

$$\mathcal{W}^{2}(\gamma_{1}, \gamma_{2}) \triangleq \inf_{\pi \in \Pi} \int_{\mathbb{R} \times \mathbb{R}} \|a_{1} - a_{2}\|^{2} d\pi(a_{1}, a_{2}),$$

which represents the optimal transport (OT) cost between γ_1 and γ_2 with respect to the squared Euclidean distance $\|a_1 - a_2\|^2$ under the optimized OT plan π .

Preliminaries of Optimal Transport (OT)

Sliced Wasserstein Distance. Let $\mathbb{S}^{d-1} \subset \mathbb{R}^d$ stand for the d-dimensional unit sphere:

$$\mathcal{SW}^2(\boldsymbol{\gamma}_1,\boldsymbol{\gamma}_2) \triangleq \int_{\mathbb{S}^{d-1}} \mathcal{W}^2(\boldsymbol{\theta} \sharp \boldsymbol{\gamma}_1,\boldsymbol{\theta} \sharp \boldsymbol{\gamma}_2) \, \mathrm{d}\sigma(\boldsymbol{\theta}),$$

where σ is the uniform distribution on \mathbb{S}^{d-1} and \sharp is the push-forward operator, projecting (high-dimensional) measures γ_1 and γ_2 onto 1D.

DCE Formulation

Denote b a black-box model. Given any data distribution x' as a factual (i.e. an observation), we aim to find a counterfactual x that achieves a desired target outcome y^* , which is obtained by solving the following optimization problem.

$$\max_{\boldsymbol{x}.P} P \tag{1a}$$

s.t.
$$P \leq \mathbb{P} \left[\underbrace{\mathcal{SW}^2(\boldsymbol{x}, \boldsymbol{x}') < U_x}_{\text{Counterfactual proximity}} \right]$$
 (1b)

$$P \le \mathbb{P}\left[\underbrace{\mathcal{W}^2(b(\boldsymbol{x}), y^*) < U_y}_{\text{Counterfactual effect}}\right] \tag{1c}$$

$$P \ge 1 - \frac{\alpha}{2} \tag{1d}$$

We need a sufficiently large P

- 1: repeat
- 2: Solve OT to obtain $\mathcal{W}^2(b(\boldsymbol{x}), y^*)$ and $\mathcal{SW}^2(\boldsymbol{x}, \boldsymbol{x}')$.
- 3: Stochastic gradient descent (SGD) for

$$\min_{\boldsymbol{x}} (1 - \eta) \cdot \mathcal{SW}^{2}(\boldsymbol{x}, \boldsymbol{x}') + \eta \cdot \mathcal{W}^{2}(b(\boldsymbol{x}), y^{*})$$

- 4: Estimate Upper Confidence Limit (UCL) $\overline{\mathcal{W}^2}(b(\boldsymbol{x}),y^*)$ and $\overline{\mathcal{SW}^2}(\boldsymbol{x},\boldsymbol{x}')$ given α
- 5: Adjust η to maximize the smaller gap of $U_x \overline{\mathcal{SW}^2}$ and $U_y \overline{\mathcal{W}^2}$
- 6: **until** Counterfactual $oldsymbol{x}$ converges

$$\max_{\boldsymbol{x},P} P \tag{2a}$$

s.t.
$$P \leq \mathbb{P}\left[\underbrace{\mathcal{SW}^2(\boldsymbol{x}, \boldsymbol{x}') < U_x}_{\text{Counterfactual proximity}}\right]$$
 (2b)

$$P \leq \mathbb{P}\left[\underbrace{\mathcal{W}^2(b(\boldsymbol{x}), y^*) < U_y}_{\text{Counterfactual effect}}\right] \tag{2c}$$

$$P \ge 1 - \frac{\alpha}{2} \tag{2d}$$

We need a sufficiently large P

Theoretical Foundation. The two chance constraints (2b) and (2c) holds with probability $1 - \alpha/2$ iff $\overline{SW^2} \leq U_x$ and $\overline{W^2} \leq U_y$, respectively.

- 1: repeat
- 2: Solve OT to obtain $W^2(b(x), y^*)$ and $SW^2(x, x')$.
- 3: SGD for $\min_{\boldsymbol{x}} \ (1-\eta) \cdot \mathcal{SW}^2(\boldsymbol{x}, \boldsymbol{x}') + \eta \cdot \mathcal{W}^2(b(\boldsymbol{x}), y^*)$
- 4: Estimate UCL $\overline{\mathcal{W}^2}(b(\boldsymbol{x}), y^*)$ and $\overline{\mathcal{SW}^2}(\boldsymbol{x}, \boldsymbol{x}')$ given α
- 5: Adjust η to maximize the smaller gap of $U_x \overline{\mathcal{SW}^2}$ and $U_y \overline{\mathcal{W}^2}$
- 6: **until** Counterfactual x converges

- 1: repeat
- Solve OT to obtain $W^2(b(x), y^*)$ and $SW^2(x, x')$.
- 3: SGD for $\min (1 - \eta) \cdot \mathcal{SW}^2(\boldsymbol{x}, \boldsymbol{x}') + \eta \cdot \mathcal{W}^2(b(\boldsymbol{x}), y^*)$
- Estimate UCL $\overline{\mathcal{W}}^2(b(\boldsymbol{x}), y^*)$ and $\overline{\mathcal{SW}}^2(\boldsymbol{x}, \boldsymbol{x}')$ given α 4:
- Adjust η to maximize the smaller gap of $U_x \overline{SW^2}$ and $U_y \overline{W^2}$ 5:
- 6: until Counterfactual $oldsymbol{x}$ converges

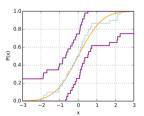
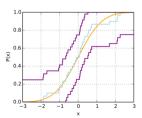


Figure: Dvoretzky-Kiefer-Wolfowitz inequality (DKW inequality)

- 1: repeat
- 2: Solve OT to obtain $W^2(b(x), y^*)$ and $SW^2(x, x')$.
- 3: SGD for $\min_{\boldsymbol{x}} \ (1-\eta) \cdot \mathcal{SW}^2(\boldsymbol{x},\boldsymbol{x}') + \eta \cdot \mathcal{W}^2(b(\boldsymbol{x}),y^*)$
- 4: Estimate UCL $\overline{\mathcal{W}^2}(b(\boldsymbol{x}), y^*)$ and $\overline{\mathcal{SW}^2}(\boldsymbol{x}, \boldsymbol{x}')$ given α
- 5: Adjust η to maximize the smaller gap of $U_x \overline{\mathcal{S}\mathcal{W}^2}$ and $U_y \overline{\mathcal{W}^2}$
- 6: until Counterfactual x converges



1D Case:
$$\mathcal{W}^2(z,z) = \int_0^1 \underbrace{\left\|F_z^{-1}(q) - F_{z'}^{-1}(q)\right\|^2}_{\text{Confidence bound obtained by DKW}} \, \mathrm{d}q$$

Figure: Dvoretzky–Kiefer–Wolfowitz inequality (DKW inequality)

- 1: repeat
- 2: Solve OT to obtain $W^2(b(x), y^*)$ and $SW^2(x, x')$.
- 3: SGD for $\min_{\pmb{x}} \; (1-\eta) \cdot \mathcal{SW}^2(\pmb{x},\pmb{x}') + \eta \cdot \mathcal{W}^2(b(\pmb{x}),y^*)$
- 4: Estimate UCL $\overline{\mathcal{W}^2}(b(\boldsymbol{x}), y^*)$ and $\overline{\mathcal{SW}^2}(\boldsymbol{x}, \boldsymbol{x}')$ given α
- 5: Adjust η to maximize the smaller gap of $U_x \overline{\mathcal{S}\mathcal{W}^2}$ and $U_y \overline{\mathcal{W}^2}$
- 6: until Counterfactual $oldsymbol{x}$ converges

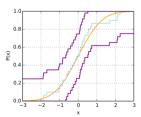


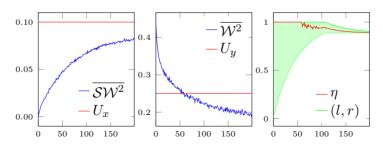
Figure: Dvoretzky–Kiefer–Wolfowitz inequality (DKW inequality)

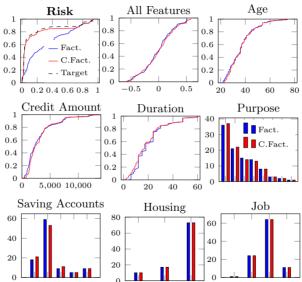
1D Case:
$$\mathcal{W}^2(z,z) = \int_0^1 \frac{\left\|F_z^{-1}(q) - F_{z'}^{-1}(q)\right\|^2}{\text{Confidence bound obtained by DKW}} \, \mathrm{d}q$$

Hence:
$$\mathcal{W}^2(z,z) \leq \underbrace{\int_0^1 \textit{Confidence bound}}_{\textit{UCL of } \mathcal{W}^2(z,z'), \textit{ i.e. } \overline{\mathcal{W}^2}(z,z')}$$

Convergence Analysis

- 1: repeat
- Solve OT to obtain $W^2(b(x), y^*)$ and $SW^2(x, x')$.
- 3: SGD for $\min (1 - \eta) \cdot \mathcal{SW}^2(\boldsymbol{x}, \boldsymbol{x}') + \eta \cdot \mathcal{W}^2(b(\boldsymbol{x}), y^*)$
- Estimate UCL $\overline{\mathcal{W}^2}(b(\boldsymbol{x}), y^*)$ and $\overline{\mathcal{SW}^2}(\boldsymbol{x}, \boldsymbol{x}')$ given α 4:
- Adjust η to maximize the smaller gap of $U_x \overline{SW^2}$ and $U_y \overline{W^2}$ 5:
- 6: **until** Counterfactual x converges





Benchmarking

	Algo.	Cover.	Cost						Proximity		Time
Model			AReS % Difference at Percentiles						ОТ	MMD	
			Cost	0-15	15 - 30	30 - 70	70-85	85-100	01	10110117	(s)
DNN (74.9%)	AReS	0.019	0.038	0.000	0.187	43.83	0.321	0.000	0.000	0.000	12
	Globe	0.962	3.346	101.6	45.08	515.8	95.56	230.5	8.521	0.039	5.3
	DiCE	0.796	18.41	100.0	100.0	326.0	12.04	30.68	0.324	0.107	7235
	Discount	0.981	22.87	7.801	8.183	265.0	9.422	6.325	0.202	0.036	632
RBFNet (73.6%)	AReS	0.058	0.049	0.000	1.002	6.000	0.418	0.000	0.002	0.001	11
	Globe	0.038	3.302	41.93	28.28	87.70	57.29	117.8	2.899	0.039	4.9
	DiCE	0.174	10.54	100.0	100.0	95.28	4.257	32.39	0.330	0.148	2735
	Discount	0.962	16.22	8.461	21.65	185.5	36.89	19.55	0.563	0.039	621
SVM (75.0%)	AReS	0.038	0.577	0.000	0.000	0.794	0.935	0.000	0.001	0.000	14
	Globe	1.000	3.600	155.1	95.49	152.2	34.98	178.6	13.72	0.039	4.8
	$_{ m DiCE}$	1.000	13.01	100.0	100.0	636.7	44.13	30.36	0.514	0.130	5767
	Discount	1.000	4.357	5.591	14.07	256.6	16.63	9.811	0.342	0.036	244

Open Problem: Information in the Optimal Transport Plan

It is worth exploring the connection between distribution shift research and the search for counterfactual explanations.

