

DEEP CLUSTERING VIA PROBABILISTIC RATIO-CUT OPTIMIZATION

Ayoub Ghriss¹ Claire Monteleoni^{1,2}

¹Department of Computer Science, University of Colorado Boulder, ² INRIA Paris

CLIP ViT-L/14: -V). SOTA on F-MNIST.

F-MNIST

Abstract

We propose PRCut, optimizing graph ratio-cut by treating assignments as random variables learned online via an unbiased gradient of an expected ratio-cut bound. This novel probabilistic approach surpasses spectral relaxations, aligns clustering strongly with similarity, and effectively utilizes/evaluates self-supervised representations.

Motivation

- Ratio-cut is a fundamental graph partitioning approach.
- Advances in self-supervised learning (SSL) produce powerful embeddings capturing similarity.
- Existing Methods Limitations:
- Contrastive: Focus on local pairs, miss global structure.
- Generative (VAE): Prone to prior overfitting.
- -Spectral Clustering Extensions: Struggle with large scale, eigendecomposition sensitivity.

Our Contribution:

- Treats assignments as random variables.
- Avoids spectral decomposition and Euclidean relaxation.
- Enables online learning via stochastic gradient descent.
- Achieves better ratio-cut and strong empirical performance.

Probabilistic Ratio-Cut (PRCut)

Core Idea: Assignments are independent random variables.

$$\Pr\left(v_i \in \mathbb{C}_\ell\right) = \Pr\left(\mathbf{a}_i^{(\ell)} = 1\right) \stackrel{\text{def}}{=} P_{i,\ell}, \quad \text{with } \sum_{\ell} P_{i,\ell} = 1.$$

Using random ratio-assignment $\mathbf{f}^{(\ell)} = \mathbf{a}^{(\ell)} / \sqrt{\sum_j \mathbf{a}_j^{(\ell)}}$, minimize the expected ratio-cut $RC(C_k) = \mathbb{E} \left[\widehat{RatioCut}(C_k) \right]$.

Exact expectation involves complex terms:

$$\mathbb{E}\left[(\mathbf{f}_{i}^{(\ell)} - \mathbf{f}_{j}^{(\ell)})^{2}\right] = (P_{i\ell} + P_{j\ell} - 2P_{i\ell}P_{j\ell}) \mathbb{E}\left[\frac{1}{1 + \sum_{m \neq i,j} \mathbf{a}_{m}^{(\ell)}}\right]$$
Hard to compute / optimize

We derive a tractable upper bound on $RC(C_k)$:

$$\mathbf{RC}(\mathcal{C}_k) \leq \mathcal{L}_{rc}(\boldsymbol{W}, \boldsymbol{P}) = \sum_{\ell=1}^k \frac{1}{\overline{\boldsymbol{P}}_{:,\ell}} \sum_{i,j=1}^n W_{ij}(P_{i\ell} + P_{j\ell} - 2P_{i\ell}P_{j\ell})$$

where $\overline{P}_{i,\ell} = \frac{1}{n} \sum_{i} P_{i\ell}$ (likelihood of cluster ℓ).

Online Gradient Estimation: We derive an unbiased gradient estimator by using moving averages for P:

- Compute batch gradient P based on $\frac{d\mathcal{L}_{rc}}{dP}$.
- Backpropagate loss term $\propto \text{Tr}(\boldsymbol{P}^{\top} \operatorname{sg}(\boldsymbol{P}))$.

Regularization: Add KL-divergence term to prevent cluster collapse and encourage balanced clusters:

$$\mathcal{L}_{prcut}(oldsymbol{W},oldsymbol{P}) = \mathcal{L}_{rc}(oldsymbol{W},oldsymbol{P}) + \gamma D_{ ext{KL}}(\overline{oldsymbol{P}} \parallel rac{1}{k} \mathbf{1}_k)$$

Experiments: Setup & Metrics

- Network: Simple MLP or Linear layer on embeddings. Softmax output for P_{θ} .
- Similarity \mathcal{K} :
- Label-based (Oracle): $W_{ij} = 1$ if $y_i = y_j$.
- k-Nearest Neighbors (kNN) graph adjacency (k = 150).
- -Cosine similarity on SSL embeddings (DINOv2, CLIP-ViT, SimCLR, All4One).
- Baselines: Spectral Clustering (SC), VMM, Turtle.

vs Baselines

Finding: Using label-based similarity, PRCut achieves performance comparable to a supervised classifier trained with labels. Shows PRCut accurately translates similarity into clusters.

Dataset	Method	ACC	NMI
MNIST	CE	0.980	0.943
	PRCut	0.987	0.938
F-MNIST	CE	0.885	0.803
	PRCut	0.887	0.789
CIFAR10	CE	0.582	0.369
	PRCut	0.571	0.359

Evaluating SSL Representations

CIFAR10 Turtle-V 0.972 0.929

CIFAR100 Turtle-D **0.806 0.870**

vs SOTA Methods

Finding: PRCut is competitive with the latest methods, es-

pecially when using powerful SSL embeddings (DINOv2: -D,

Method ACC NMI

Turtle-D 0.764 0.723

PRCut-D **0.791 0.758**

PRCut-V **0.975 0.934**

PRCut-D 0.789 0.856

0.596 0.593

0.712 0.688

0.217 0.121

Finding: PRCut can differentiate the quality of various SSL representations. CLIP ViT-L/14 performs best on CIFAR10, DINOv2 on CIFAR100. SimCLR embeddings are less effective for graph clustering.

	Dataset	Rep	ACC	NMI
		Raw	0.243	0.121
		SimCLR	0.721	0.652
	CIFAR10	All4One	0.710	0.635
		VitL-14	0.975	0.934
		DinoV2	0.774	0.797
		Raw	0.054	0.022
	CIFAR100	SimCLR	0.362	0.483
		All4One	0.382	0.511
		VitL-14	0.720	0.755
		DinoV2	0.789	0.856

PRCut Algorithm

Require: Similarity kernel K, encoder N_{θ} , #clusters k.

- while not terminated do
- 2: $t \leftarrow t + 1$
- Sample batches S_l , S_r size b.
- Compute similarities $W = \mathcal{K}(S_l, S_r)$.
- Compute probabilities $P_{\theta}^{l}, P_{\theta}^{r} \leftarrow N_{\theta}(S_{l}), N_{\theta}(S_{r}).$
- Update moving average \overline{P}_t using P_{θ}^l , $\overline{P_{\theta}^r}$.
- Compute gradients $P_{\theta}^{l}, P_{\theta}^{r}$ for \mathcal{L}_{rc} using \overline{P}_{t} .
- Backpropagate Tr $\left[\boldsymbol{P}_{\theta}^{l} \operatorname{sg}(\boldsymbol{P}_{\theta}^{l})^{\top} + \boldsymbol{P}_{\theta}^{r} \operatorname{sg}(\dot{\boldsymbol{P}}_{\theta}^{r})^{\top} \right]$
- Update parameters θ using accumulated gradients.
- 10: end while

vs Spectral Clustering

Finding: PRCut achieves a better (lower) Ratio Cut objective and better clustering metrics (ACC, NMI) than standard Spectral Clustering using kNN similarity.

Dataset	Method	ACC	NMI	RC
MNIST	SC (Best)	0.70	0.744	170.1
MINIST	PRCut	0.821	0.778	150.2
E MAIICT	SC (Best)	0.596	0.593	110.2
F-MNIST	PRCut	0.658	0.620	101.5
CIFAR10	SC (Best)	0.217	0.086	479.3
	PRCut	0.243	0.121	440.3

Future Work

- Iterative approach for a K-Means like algorithm
- Sinkhorn-Knopp for $\mathrm{Tr}(\overline{\boldsymbol{P}}^{-1}(\boldsymbol{1}_{n,k}-\boldsymbol{P})^{\top}\boldsymbol{W}\boldsymbol{P})$
- Dynamic determination of the number of clusters k.
- Probabilistic normalized cut.

G = (V, E, W) a graph with n vertices and adjacency W: • Partition \mathcal{V} into k disjoint clusters $\mathcal{C}_k = \{\mathbb{C}_1, \dots, \mathbb{C}_k\}$.

- Cluster \mathbb{C}_{ℓ} represented by indicator $\mathbf{1}_{\mathbb{C}_{\ell}}$ and ratio $f_{\ell} = \frac{\mathbb{I}_{\mathbb{C}_{\ell}}}{\|\mathbb{C}\|}$.
- Ratio-Cut objective:

$$\operatorname{RatioCut}(\mathcal{C}_k) = \frac{1}{2} \sum_{\ell=1}^{k} \sum_{i,j \in \mathbb{C}_{\ell} \times \overline{\mathbb{C}_{\ell}}} \frac{W_{ij}}{|\mathbb{C}_{\ell}|} \propto \sum_{\ell=1}^{k} \sum_{i,j} W_{ij} \left(f_{\ell i} - f_{\ell j}\right)^2$$

• Matrix form using unnormalized Laplacian $\boldsymbol{L}_{un} = \boldsymbol{D} - \boldsymbol{W}$:

RatioCut
$$(C_k) = \frac{1}{2} \operatorname{Tr} \left[\boldsymbol{F}_{C_k}^{\top} \boldsymbol{L}_{un} \boldsymbol{F}_{C_k} \right]$$

• Optimization is NP-hard. Spectral clustering relaxes this to find eigenvectors of L_{un} .

