

Decoupling Epistemic and Aleatoric Uncertainties using Possibility Theory

Nong Minh Hieu ^{1, 3} Jeremie Houssineau ¹ Neil K. Chada ² Emanuel Delande ⁴

¹School of Physical and Mathematical Sciences, NTU Singapore ³School of Computing and Information Systems, SMU Singapore

²Department of Mathematics, CityU Hong Kong ⁴Centre National D'Etudes Spatiales, France

Overview & Contributions

Bayesian Inference: Let $x_1, \ldots, x_n \sim p_{\theta^*}$ be i.i.d. observations whose distribution is parameterized by a true parameter $\theta^* \in \Theta$. In traditional Bayesian framework, θ^* is inferred probabilistically. For example, let p denote the (probabilistic) prior, the MAP estimator is defined as:

$$\theta_{\text{MAP}}^* = \arg\max_{\theta \in \Theta} p(\theta) L(x_1, \dots, x_n; \theta), \quad L(x_1, \dots, x_n; \theta) = \prod_{i=1}^n p_{\theta}(x_i).$$

Decoupling EU and AU: Two types of uncertainties are Aleatoric Uncertainty (AU) and Epistemic Uncertainty (EU), Specifically:

- AU stems from the inherent randomness of the data.
- EU stems from the lack of information (non-random phenomena).

Contributions: In this work, we proposed an inference framework that models AU and EU jointly through combining probability theory and possibility theory. Under this framework, we proved:

- 1. A possibilistic version of the Bernstein-von Mises (BvM) theorem.
- 2. Possibilistic versions of the Law of Large Numbers (LLN) and Central Limit Theorem (CLT).
- 3. The asymptotic behavior of the possibilistic MAP estimator.

Deterministic Uncertain Variable

Definition (Uncertain Variable): Let Ω_d be the space of deterministic phenomena and $\omega^* \in \Omega_d$ be the true outcome. A *deterministic uncertain variable* $\boldsymbol{\theta}$ is the mapping $\boldsymbol{\theta}: \Omega_d \to \Theta$ such that the true outcome is associated to the true parameter θ^* , i.e., $\boldsymbol{\theta}(\omega^*) = \theta^*$.

Example (Coin Toss): Suppose that one among n unfair coins with head probabilities ρ_1, \ldots, ρ_n is selected once (no randomness involved) to conduct some experiment. Then, we have the space of deterministic phenomena $\Omega_{\rm d}=[n]$ and the deterministic uncertain variable $\boldsymbol{\theta}$ is defined as:

$$\boldsymbol{\theta}(i) = \rho_i, \quad \forall i \in [n].$$

We can also write $\boldsymbol{\theta}: i \mapsto (\Omega_{\mathbf{r}}, 2^{\Omega_{\mathbf{r}}}, \mathbb{P}_{\rho_i})$ where $\Omega_{\mathbf{r}} = \bigotimes_{i=1}^m \{H, T\}$ if the random experiment involves tossing the coin m times and \mathbb{P}_{ρ_i} is the Bernoulli PMF with head probability ρ_i .

Possibility Functions & OPMs

Definition (Possibility Function): A given uncertain variable θ on Θ is described by the set function $\bar{P}: 2^{\Theta} \to [0,1]$, which is an outer probability measure over Θ :

$$\forall A \subseteq \Theta : \bar{P}(A) = \sup_{\theta \in \Theta} f_{\theta}(\theta),$$

where $f_{\theta}: \Theta \to [0,1]$ is a (non-unique) possibility function that describes θ . For each $A \subseteq \Theta$, $\bar{P}(A)$ represents the *credibility* of the event $\theta \in A$. Specifically,

- $\bar{P}(A) = 1$ implies no evidence against $\theta \in A$.
- $\bar{P}(A) = 0$ implies no possibility that $\theta \in A$.

Important Notations

Given an uncertain variable θ over $\Theta \subset \mathbb{R}^d$ described by the possibility function f_{θ} , we have the following important definitions:

Notation	Formula
Expected Value	$\mathbb{E}_{f_{\boldsymbol{\theta}}}^*[\boldsymbol{\theta}] = \arg \max_{\theta \in \Theta} f_{\boldsymbol{\theta}}(\theta)$
Variance	$\mathbb{E}_{f_{m{ heta}}}^*[m{ heta}] = rg \max_{ heta \in \Theta} f_{m{ heta}}(heta) \ \mathbb{V}_{f_{m{ heta}}}^*(m{ heta}) = ar{\mathcal{I}}_{f_{m{ heta}}}(m{ heta})^{-1}$
Fisher Information	$ar{\mathcal{I}}_{f_{m{ heta}}}(m{ heta}) = \mathbb{E}_{f_{m{ heta}}}^* \Big[-H\Big(\log f_{m{ heta}}(heta)\Big) \Big]$
Gaussian Possibility Function	$\overline{N}_d(\theta; \mu, \Lambda) = \exp\left(-\frac{1}{2}(\theta - \mu)^\top \Lambda(\theta - \mu)\right).$

Table 1. For Fisher Information - $H(\cdot)$ denotes the Hessian matrix. For Gaussian Possibility Function - $\mu \in \mathbb{R}^d$ denotes the mean vector and $\Lambda \in \mathbb{R}^{d \times d}$ is a positive semi-definite *precision* matrix.

Inference with OPMs

Let θ be the uncertain variable over Θ described by the (prior) possibility function f_{θ} and X be a random variable whose density comes from the family $\{p_X(\cdot|\theta):\theta\in\Theta\}$. By analogy to the Bayes rule, the possibility function describing θ given X=x is defined as:

$$f_{\theta|X}(\theta|x) = \frac{p_X(x|\theta)f_{\theta}(\theta)}{\sup_{\varphi \in \Theta} p_X(x|\varphi)f_{\theta}(\varphi)}$$

For each $\theta \in \Theta$, we assume that the mapping $\theta \mapsto f_{\theta}(\theta)p_X(x|\theta)$ is bounded. As a result, the equivalent definition of the MAP estimator is:

$$\widehat{\theta}_{\text{MAP}} = \arg \max_{\theta \in \Theta} f_{\theta|X}(\theta|x).$$

Asymptotic Behavior of the Possibilistic Posterior

Theorem (Bernstein-von Mises): Let x_1, \ldots, x_n be observations drawn i.i.d. from $p_X(\cdot|\theta^*)$ and let $p_n(\cdot|\theta)$ denotes the distribution of the random sample x_1, \ldots, x_n given any $\theta \in \Theta$. Assume that the following conditions are met:

- 1. $\Theta \subset \mathbb{R}^d$ is compact and convex.
- 2. $\theta^* \in \Theta$ and the MLE is consistent.
- 3. The possibilistic prior f_{θ} is continuous and positive in a neighborhood of θ^* .

Then, for large values of n, it holds that:

$$f_{\boldsymbol{\theta}}(\boldsymbol{\theta}|x_1,\ldots,x_n) \approx \overline{\mathrm{N}}\bigg(\boldsymbol{\theta};\boldsymbol{\theta}^* + \frac{\Delta_n}{\sqrt{n}},\mathcal{J}_n\bigg),$$

where $\mathcal{J}_n = -H_{\theta} \Big(\log p_n \big(x_1, \dots, x_n \big| \hat{\theta}_{\mathrm{MLE}}(x_1, \dots, x_n) \big) \Big)$ is the observed information at the MLE based on x_1, \dots, x_n and Δ_n is defined as:

$$\Delta_n = \sqrt{n} \mathcal{J}_n^{-1} \nabla_{\theta} \log p_n(x_1, \dots, x_n | \theta^*).$$

 \longrightarrow Intuitively, as $n \to \infty$, the possibilistic MAP tends to $\hat{\theta}_{\text{MLE}}(x_1, \dots, x_n)$, making the information in the possibilistic prior forgotten.

Law of Large Numbers

Theorem (Law of Large Numbers): If $x, x_1, x_2, ...$ is a sequence of independent deterministic uncertain variables on \mathbb{R}^d with possibility function f_x such that

- 1. f_x is continuous on \mathbb{R}^d .
- 2. f_x is twice continuously differentiable on an open neighborhood of each point in $\mathbb{E}^*[x]$.
- 3. $\lim_{\|x\| \to \infty} f_{\mathbf{x}}(x) = 0$.

Then, the possibility function f_{s_n} describing $s_n = \frac{1}{n} \sum_{i=1}^n x_i$ verifies:

$$\lim_{n\to\infty} f_{\boldsymbol{s}_n}(t) = \mathbf{1}_{\operatorname{Conv}(\mathbb{E}^*[\boldsymbol{x}])}(t),$$

where the convergence is point-wise and Conv(S) is the convex hull of a set $S \subseteq \mathbb{R}^d$.

Central Limit Theorem

Theorem (Central Limit Theorem): If $x, x_1, x_2, ...$ is a sequence of deterministic uncertain variables on $\mathbb R$ independently and identically described by a possibility function f_x verifying:

- 1. f_x is strictly log-concave.
- 2. f_x is twice-differentiable.

Then $\mathbb{E}^*[x]$ is a singleton and the possibility function f_{t_n} describing $t_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n (x_i - \mathbb{E}^*[x])$ verifies:

$$\lim_{n\to\infty} f_{\boldsymbol{t}_n} = \overline{\mathrm{N}}\Big(0, \bar{\mathcal{I}}(\boldsymbol{x})\Big),$$

where the convergence is uniform.

Asymtotic Behaviour of Possibilistic MAP

Corollary: Let x_1, \ldots, x_n be i.i.d. observations described by a possibility function $f_{\boldsymbol{x}}(\cdot|\theta^*)$. Let $f_n(\cdot|\theta)$ be the possibility function describing $\boldsymbol{x}_{1:n} = (\boldsymbol{x}_1, \ldots, \boldsymbol{x}_n)$ for any $\theta \in \Theta$. Define the corresponding MLE as $\arg\max_{\theta \in \Theta} f_n(\boldsymbol{x}_{1:n}|\theta)$. Under the same conditions as the **BvM** theorem with d=1 and assume additionally:

- 1. $f_{\boldsymbol{x}}(\cdot|\theta)$ is strictly log-concave for any $\theta \in \Theta$.
- 2. The map $(\theta, x) \mapsto f_{\boldsymbol{x}}(x|\theta)$ is twice differentiable in x as well as thrice-differentiable in θ .
- 3. $\partial_{\theta}^{3} \log f_{n}(\boldsymbol{x}_{1:n}|\theta) = \bar{O}_{p}(n)$.

Then, the possibility function f_{t_n} describing the deterministic uncertain variable $t_n = \sqrt{n}(\widehat{\theta}_{MAP}(\boldsymbol{x}_{1:n}) - \theta^*)$ verifies:

$$\lim_{n\to\infty} f_{\boldsymbol{t}_n} = \overline{\mathrm{N}}(0, \bar{\mathcal{I}}(\theta^*)^2 \tau_s),$$

where $\tau_s = \bar{\mathcal{I}}(\partial_{\theta} \log f_{\boldsymbol{x}}(\boldsymbol{x}|\theta^*))$ is the precision of the score.