Minimum Empirical Divergence for Sub-Gaussian Linear Bandits

THE UNIVERSITY OF ARIZONA

Kapilan Balagopalan, Kwang-Sung Jun kapilanbgp@arizona.edu, kjun@cs.arizona.edu

Preliminary

Protocol: For $t \le n$:

• Choose an arm $A_t \in \mathcal{A}_t \subset \mathbb{R}^d$ and receive the reward Y_t .

Model:

- Reward $Y_t = \langle \theta^*, A_t \rangle + \eta_t$, where $\theta^* \in \mathbb{R}^d$ is an unknown.
- Noise: η_t is σ_*^2 -sub-Gaussian.

Goal: Minimize cumulative regret,

• Reg_n := $\sum_{t=1}^{n} \langle a_t^*, \theta^* \rangle - \langle A_t, \theta^* \rangle$ where $a_t^* := \max_{a \in \mathcal{A}_t} \langle a, \theta^* \rangle$.

Assumption 1: For all $t \ge 1$, every arm $a \in A_t$ satisfies $||a||_2 \le 1$ and for some constant B, $\Delta_{a,t} := \langle \theta^*, a_t^* \rangle - \langle \theta^*, a \rangle \le B$. Furthermore $||\theta^*||_2 = S_*$.

Main results

Theorem 1 (Instance-dependent bound). Under Assumption 1, with $\delta_t = \frac{1}{t+1}$, Lin-MED satisfies, $\forall n \geq 1$,

$$\mathbb{E}\operatorname{Reg}_{n} = \left(\frac{1}{\Delta}d\log(n)\left(\left(\sigma^{2}d\log(n) + \lambda S^{2}\right)\log(\log n) + \left(\sigma_{*}^{2}d\log(n) + \lambda S_{*}^{2}\right)H_{\max}\right)\right).$$

Our algorithm achieves an instance dependent bound of $\hat{O}(\frac{1}{\Delta}d^2(\log^2 n))$. (Symbol \hat{O} ignores $\log(\log(n))$ factor)

Theorem 2 (Minimax Bound). Under Assumption 1, with $\delta_t = \frac{1}{t+1}$, LinMED satisfies, $\forall n \geq 1$,

$$\mathbb{E}\operatorname{Reg}_{n} = \left(\sqrt{n}\left(\log^{\frac{1}{2}}(n)\left(d\sigma\log(n) + \frac{\lambda S^{2}}{\sigma}\right) + \frac{H_{\max}}{\sigma\log^{\frac{3}{2}}(n)}\left(d\sigma_{*}^{2}\log(n) + \lambda S_{*}^{2}\right)\right)\right).$$

S and σ^2 are the guesses for S_* and σ^2_* respectively. Our algorithm achieves a near-optimal minimax bound $(\tilde{O}(d\sqrt{n}))$ and a state-of-the art instance dependent bound $(\frac{1}{\Delta}d^2\log^2 n)$, even when S_* and σ^2_* are misspecified. (Many state-of-the-art algorithms including OFUL lacks an analysis when they are underspecified)

Comparison

Algorithms	Minimax regret	Instance dependent regret	Closed form probability	Probability assigned for all arms
OFUL(Abbasi-Yadkori et al., 2011)	$\tilde{O}(d\sqrt{n})$	$O(\frac{d^2}{\Delta}\log^2 n)$	N/A	X
LinIMED(Bian and Tan Y.F, 2024)	$\tilde{O}(d\sqrt{n})$	Unknown	N/A	X
LinTS(Agrawal and Goyal, 2014)	$\tilde{O}(d^{\frac{3}{2}}\sqrt{n})$	Unknown	×	X
RandUCB _(Vaswanit et al., 2020)	$\tilde{O}(d\sqrt{n})$	Unknown	X	X
$SquareCB_{\rm (Foster\ and\ Rakhlin,\ 2020)}$	$\tilde{O}(\sqrt{Kdn})$	Unknown	√	X
${ m E2D}_{ m (Foster\ et\ al.,\ 2023)}$	$\tilde{O}(d\sqrt{n})$	Unknown	√	X *
$SpannerIGW_{\rm (Zhu\ et\ al.,\ 2022)}$	$\tilde{O}(d\sqrt{n})$	$\Omega(\Delta\sqrt{n})$	√	X *
${ m EXP2}_{ m (Bubeck\ and\ Cesa-Bianchi,\ 2012)}$	$O(\sqrt{dn\log K})$	$\Omega(\Delta\sqrt{n})$	√	✓
LinMED(ours)	$\tilde{O}(d\sqrt{n})$	$\hat{O}(\frac{d^2}{\Delta}\log^2 n)$	✓	✓

Symbol ' X^* ' means that the algorithm can be modified to assign probability to all arms. Symbol \tilde{O} ignores the $\log(n)$ factor. Symbol \hat{O} ignores the $\log(\log(n))$ factor.

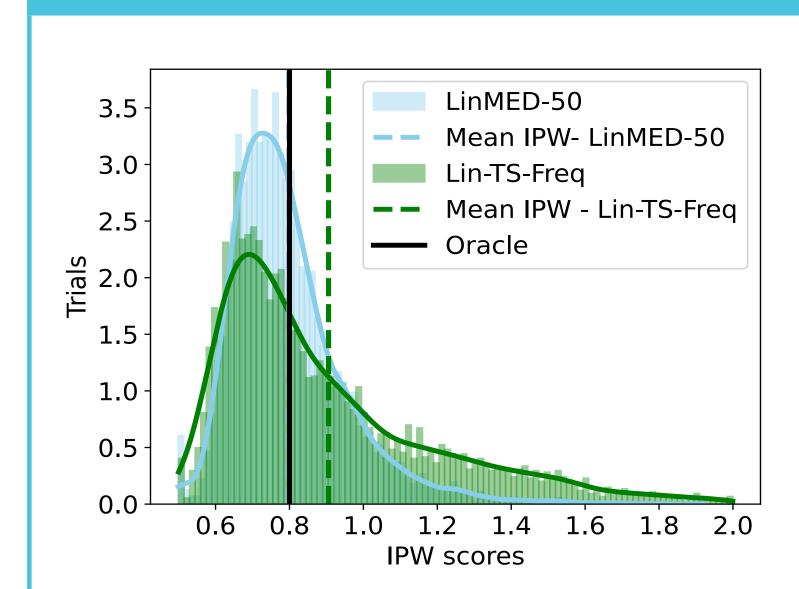
Supplementary result

Theorem 3. There exists a linear bandit problem for which the EXP2 and Spanner-IGW algorithms satisfy

$$\mathbb{E} \operatorname{Reg}_n \ge \Omega(\Delta \sqrt{n}).$$

EXP2 (Bubeck and Cesa-Bianchi, 2012) and SpannerIGW (Zhu et al., 2022) have polynomial instance dependent lower bound. LinMED achieves polylog instance dependent upper bound.

OPE-friendliness



 $\mathcal{A} = \{a_1 = (1,0)^{\mathsf{T}}, a_2 = (0.6,0.8)^{\mathsf{T}}\}, \theta^* = (1,0)^{\mathsf{T}},$ LinTS's mean = 0.906, Oracle's mean \approx LinMED's mean = 0.800

IPW score =
$$\frac{1}{n} \sum_{t=1}^{n} \frac{\pi_t^{\text{target}}(A_t)}{p_t(A_t)} \cdot Y_t.$$

 $(\pi_t^{\text{target}}(A_t) = \frac{1}{|\mathcal{A}|})$ IPW scores (expected regret equivalent) of the uniform policy when the logging policy is LinMED and LinTS respectively. We used 10^3 Monte Carlo samples to estimate the sampling probabilities of LinTS. Oracle denotes the expected reward of the uniform policy. LinTS shows a nontrivial amount of bias while LinMED is exactly aligned

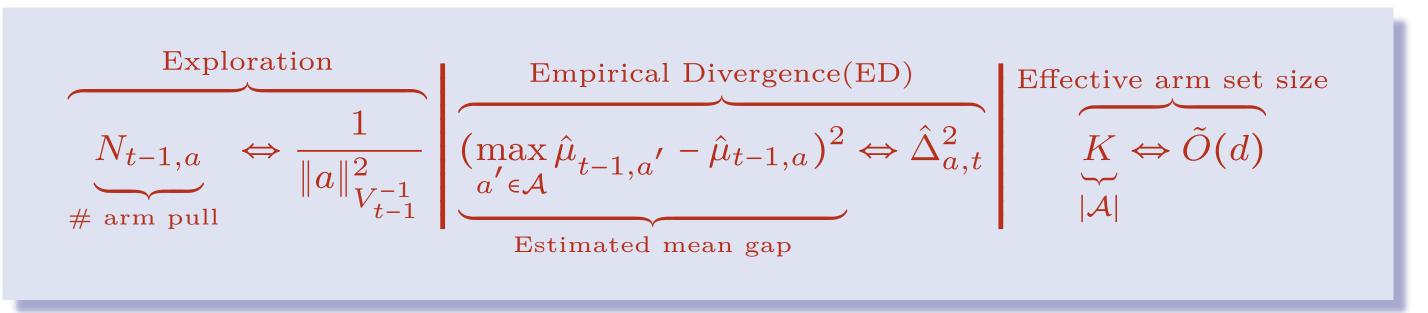
with the oracle.

Highlights and contributions

- LinMED: Linear extension for MED algorithm. (Bian and Jun, 2022, Honda and Takemura, 2011)
- Near-optimal minimax bound and logarithmic instance dependent bound even with noise misspecification.
- Polynomial instance dependent lower bounds for SpannerIGW (Zhu et al., 2022) and EXP2 (Bubeck and Cesa-Bianchi, 2012) $(\Omega(\Delta\sqrt{n}))$, which are strictly worse than LinMED.
- Offline policy evaluation friendly algorithm: Our algorithm assigns a closed from probability for each arm, hence it can be used as a logging policy for offline performance evaluation of other policies.

MED vs LinMED

$$p_{t,a} \propto \exp\left(-\frac{N_{t-1,a}}{2} \cdot (\max_{a' \in \mathcal{A}} \hat{\mu}_{t-1,a'} - \hat{\mu}_{t-1,a})^2\right).$$
 (MED)



LinMED algorithm

Algorithm 1 LinMED

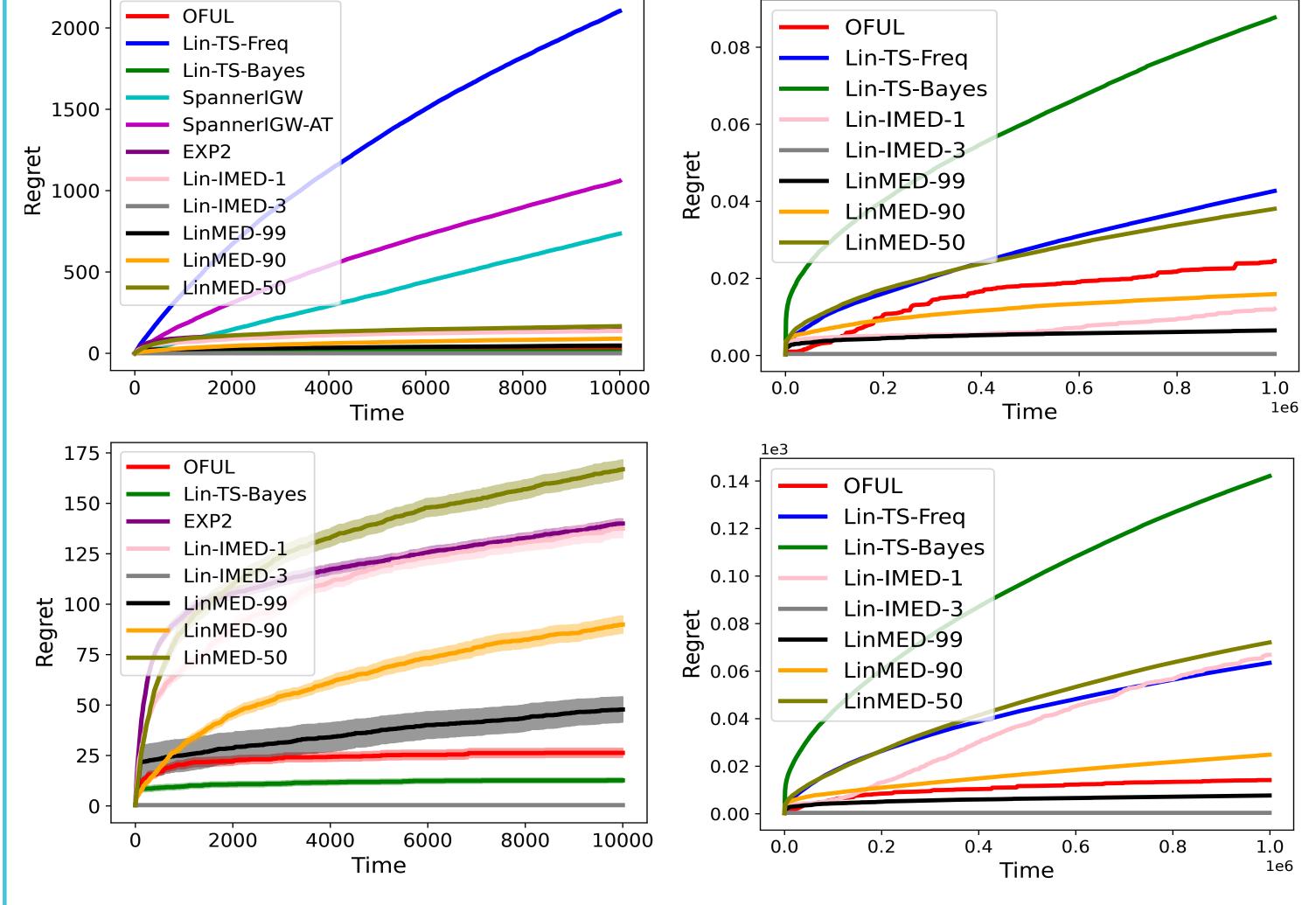
Input: Regularization λ , failure rates $\{\delta_t\}_{t=0}^{\infty}$, optimal design fraction α_{opt} , empirical best fraction α_{emp} , S (guess for $\|\theta^*\|_2$), and σ^2 (guess for σ_*^2)

- 1: Initialize $\hat{\theta}_0 = 0$, $V_0 = \lambda I$.
- 2: **for** t = 1, 2, ... **do**
- 3: Observe arm set A_t .
- 4: Estimate $\hat{a}_t = \max_{a' \in \mathcal{A}_t} \langle \hat{\theta}_{t-1}, a' \rangle$.
- Estimate $\hat{\Delta}_{a,t} := \langle \hat{\theta}_{t-1}, \hat{a}_t a \rangle \quad \forall a \in \mathcal{A}_t.$
- 6: Define $\forall a \in \mathcal{A}_t$

$$f_t(a) = \exp\left(-\frac{\hat{\Delta}_{a,t}^2}{\beta_{t-1}(\delta_{t-1})\|\hat{a}_t - a\|_{V_{t-1}^{-1}}^2}\right)$$
where we take $\frac{0}{0} = 0$ and $\beta_t(\delta_t) \coloneqq \left(\sigma\sqrt{\log\left(\frac{\det V_t}{\det V_0}\right) + 2\log\frac{1}{\delta_t}} + \sqrt{\lambda}S\right)^2$

- 7: Re-scale the arms: $\overline{\mathcal{A}}_{(t)} = \{ \sqrt{f_t(a)} \cdot a \mid a \in \mathcal{A}_t \}.$
- S: Compute $q_t^{\text{opt}} = \text{ApproxDesign}(\bar{\mathcal{A}}_t)$ such that $||b||_{V^{-1}(q_t^{\text{opt}})}^2 \leq \tilde{O}(d), \forall b \in \bar{\mathcal{A}}_t$.
- 9: Let $\forall a \in \mathcal{A}_t$ $q_t(a) = \alpha_{\text{opt}} \cdot q_t^{\text{opt}}(a) + \alpha_{\text{emp}} \cdot \mathbf{1} \{ a = \hat{a}_t \} + (1 \alpha_{\text{opt}} \alpha_{\text{emp}}) \cdot \frac{1}{|\mathcal{A}_t|}$.
- 10: Compute $p'_t(a) = \frac{q_t(a)f_t(a)}{\sum_{b \in \mathcal{A}_t} q_t(b)f_t(b)}$.
- 11: Define $\mathcal{B}_t = \{ a \in \mathcal{A}_t : ||a||_{V_t^{-1}}^2 > 1 \}.$
- V_{t-1} :
- 12: if $|\mathcal{B}_t| > 0$ then
- 3: $\forall a \in \mathcal{A}_t, \quad p_t(a) = \frac{1}{2}p_t'(a) + \frac{1}{2}\mathbf{1}\left\{a = B_t\right\} \text{ where } B_t \in \mathcal{B}_t.$ 4: **else**
- 15: $\forall a \in \mathcal{A}_t \quad p_t(a) = p'_t(a).$
- 16: end if
- 17: Take action $A_t \sim p_t$.
- 18: Observe the reward Y_t and update $V_t = V_{t-1} + A_t A_t^{\mathsf{T}}$ and $\hat{\theta}_t = V_t^{-1} \sum_{s=1}^t A_s Y_s$. 19: **end for**

Experiments



Large gap instance Model $1 \leftarrow \theta^* = (1, 0), \ \eta_t \sim \mathcal{N}(0, \sigma^2 = 1)$

End of optimism instance Model $1, \epsilon \in \{0.005, 0.01\}$

 $\mathcal{A} = \{(1,0),(0,1)\}$ $\mathcal{A} = \{a_1 = (1,0), a_2 = (0,1), a_3 = (1-\epsilon,2\epsilon)\}$ LinMED shows logarithmic growth for Large gap instance. Optimistic algorithms like OFUL and Thompson sampling fail under End of optimism experiments (Lattimore and Szepesvári, 2017).