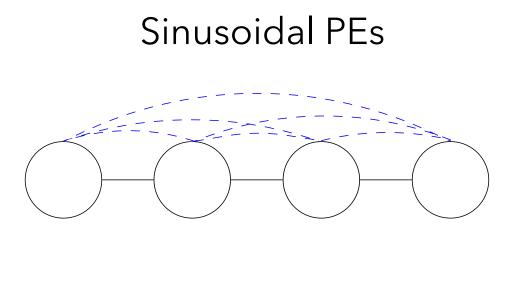
Learning Laplacian Positional Encodings

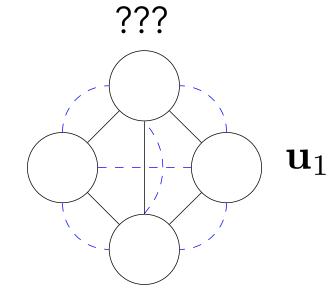
¹University of Michigan Computer Science and Engineering ²Max Planck Institute of Biochemistry Department of Machine Learning and Systems Biology Contact: mbito@umich.edu

1. Motivation

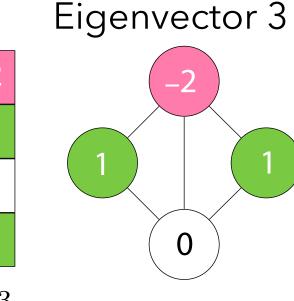
Transformers have led to tremendous progress in NLP and CV. How can we design transformers for arbitrary graphs?

Laplacian PEs, the **first k** eigenvectors of the Laplacian, generalize sin/cos to graphs $L = D - A \rightarrow L = U^{\mathsf{T}} \Lambda U, \quad P = U[:,:k]$

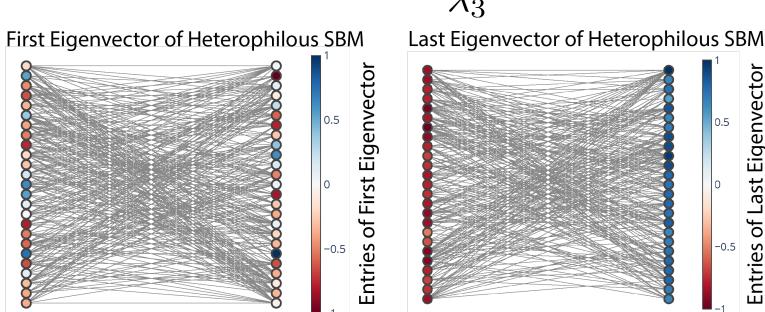




Eigenvector 1 \mathbf{u}_3



While LPEs are beneficial for homophilous graphs, we show they are not beneficial for heterophilous graphs.



2. Learnable Laplacian PEs (LLPEs)

Intuition for learning LPEs: Leverage the full eigenvector matrix **U** along with their corresponding eigenvalues A

We learn mapping $h: [0,2] \to \mathbb{R}$ where $h(\lambda_i)$ is eigenvector i's importance

$$\mathbf{P}_{\mathrm{LLPE}} = \mathbf{U}\mathbf{W}_{\mathrm{LLPE}}, \quad \mathbf{W}_{\mathrm{LLPE}} = egin{pmatrix} h(\lambda_0;oldsymbol{ heta}_0) & \cdots & h(\lambda_0;oldsymbol{ heta}_d) \ dots & \ddots & dots \ h(\lambda_n;oldsymbol{ heta}_0) & \cdots & h(\lambda_n;oldsymbol{ heta}_d) \end{pmatrix}$$

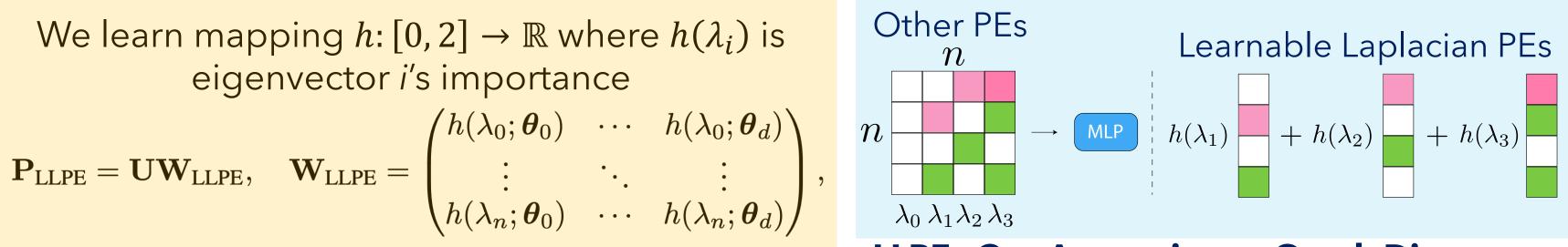
where θ_i parametrizes h. We then set h as a truncated Chebyshev series,

$$h(\lambda_i; \boldsymbol{\theta}_j) = \sum_{m=0}^{M} \boldsymbol{\theta}_j[m] \cdot T_m(\tilde{\lambda}_i), \quad T_m(\tilde{\lambda}_i) = \cos(m \cdot \arccos(\tilde{\lambda}_i))$$

where θ_i are learnable Chebyshev weights.

LLPEs Exhibit Tighter Generalization

LLPEs operate on the significantly smaller Laplacian spectrum, as opposed the full eigenspace



LLPEs Can Approximate Graph Distances

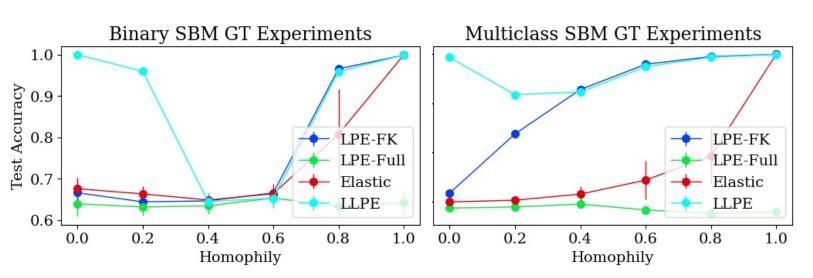
LLPE can approximate distances on graphs, including random walks, heat kernels, and diffusion --- formally, distances defined

$$f_r(i,j)^2 = \sum_{k=1}^n r(\lambda_k) (\mathbf{u}_k[i] - \mathbf{u}_k[j])^2.$$

where i and j are nodes and r: $[0,2] \to \mathbb{R}^+$.

3. Experimental Results

LLPE identifies relevant graph structure on synthetic SBMs



	Tolokers	Cora-Full	Computers	\mathbf{Cora}
# Nodes $ V $	11.7K	$19.7 \mathrm{K}$	$13.7\mathrm{K}$	$2.7\mathrm{K}$
# Edges E	519K	$126.8 \mathrm{K}$	491.7K	$5.4\mathrm{K}$
Homophily	0.17	0.50	0.70	0.75
ElasticPE	73.23 ± 2.90	57.92 ± 1.39	85.28 ± 0.86	74.67 ± 1.68
SAN-PE	78.42 ± 1.15	60.25 ± 0.60	85.36 ± 0.55	73.16 ± 1.40
SignNet	73.96 ± 0.86	60.28 ± 0.59	85.09 ± 0.68	72.66 ± 2.28
RWSE	74.09 ± 0.69	60.07 ± 0.87	85.05 ± 0.83	74.27 ± 2.28
LLPE (ours)	80.85 ± 0.83	61.02 ± 0.60	87.83 ± 0.45	80.83 ± 1.33

Across a range of homophily LLPEs outperform existing PEs on complex real graphs

We propose a new learnable Laplacian position encoding that helps capture graph structure in both homophilous and heterophilous settings by leveraging the full spectrum of the graph Laplacian, representing a significant step in developing datadriven PEs that capture complex graph structures