

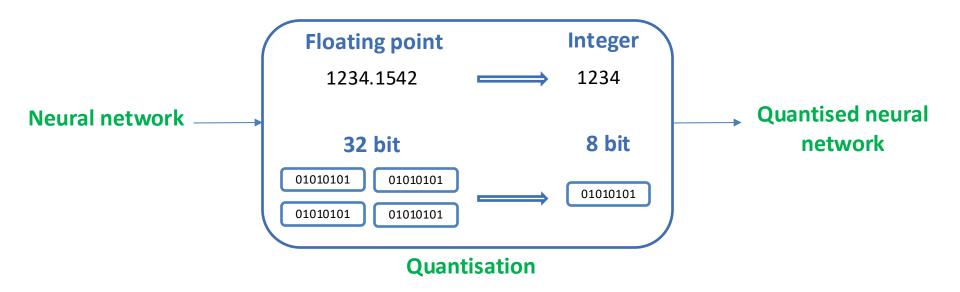
Certifiably Quantisation-Robust Training and Inference of Neural Networks

Hue Dang, Matthew Robert Wicker, Goetz Botterweck, Andrea Patane

Overview

- 1. Introduction
- 2. Methods
- 3. Experiments
- 4. Discussion

Introduction



Formal guarantees on the behavior of quantised models?

Introduction

What are our contributions?

✓ Verification across *all possible quantised networks*, independent of specific schemes

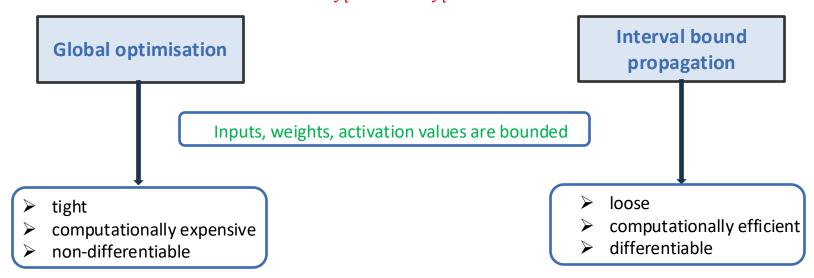
✓ Differentiable bounds that enable both verification and robust training.

✓ Formal guarantees for quantisation-robust neural networks.

Methods

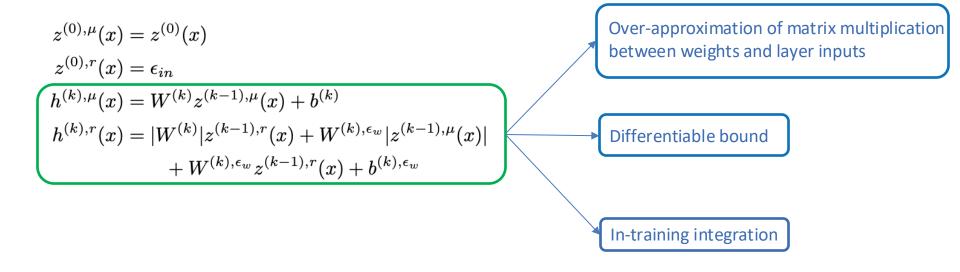
Verify all possible quantised networks, independent of specific

Find the worst-case scenario of each output dimension \hat{y}_i and \hat{y}_i



Methods

Differentiable bound Propagation for Quantisation-Robust Training



Experiments

Training a neural network with differentiable bound propagation technique improves its robustness

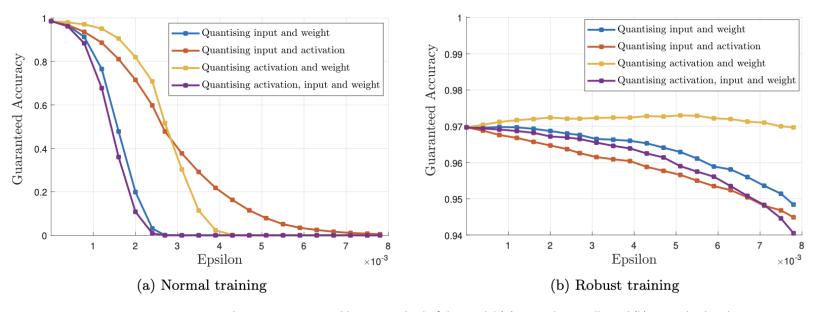


Figure 1: Guaranteed accuracy computed by IBP method of the model (a) trained normally and (b) trained robustly

Experiments

Verification of all possible quantised networks parameterised by 6/8/10 bit quantisation diameters

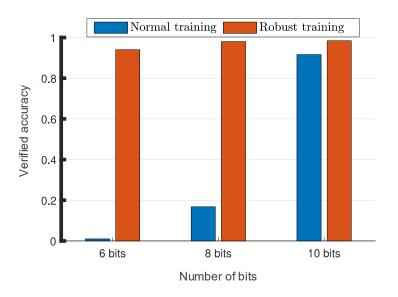


Figure 2: Comparison of normal training and robust training on verified accuracy computed by bilinear optimization method

Experiments

Differentiable bound trained models are only robust but also easier to verify

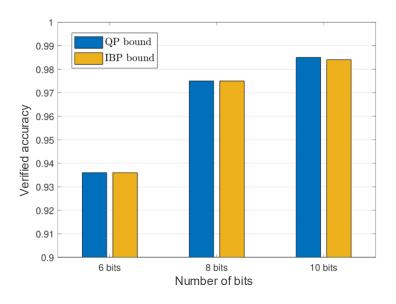


Figure 3: Verified accuracy computed by IBP and BP bounds on models trained via differentiable bound propagation technique

Discussion

 Proposing formal verification and training methods for the robustness of neural networks against quantisation of their inputs, parameters and activation values

The scalability of the verification and training methods