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Sharpened Lazy Quasi-Newton Method

Main Result
֍SLIQN is the first incremental Quasi-Newton method 

with an explicit superlinear rate, an 𝑂(𝑑!) cost and a 
superior empirical performance over other methods.

֍Past works either have (a) an asymptotic convergence rate, 
or (b) 𝑂(𝑑")	cost, which is prohibitively large for high 
dimensional problems. 

Under the assumptions of  smoothness, strong convexity of  the 
functions and the Lipschitz continuity of  the Hessian, and if  the 
initial iterate 𝑥#, and the initial Hessian approximation 𝐵$# are 
close enough to 𝑥∗, and ∇!𝑓$(𝑥#) respectively, then

IQN Framework

Overview

Quasi-Newton Methods

𝑥& is the current iterate,  𝐵& is the Hessian approximation. 
Let 𝐾& = ∫#

'∇!𝑓 𝑥& + 𝑥&(' − 𝑥& 𝜆 	𝑑𝜆 and the descent 
direction 𝑢 = 𝑥&(' − 𝑥& then, 

SLIQN’s ALGO Module

𝐵)(' ≔ BFGS 𝐵&, 𝐾&, 𝑢 = 𝐵& 	− *!++"*!
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Proof  Sketch

(𝑧!, ∇𝑓! 𝑧! , 𝐵!)

(𝑧", ∇𝑓" 𝑧" , 𝐵")

(𝑧#, ∇𝑓# 𝑧# , 𝐵#)

𝑧$ = ∑𝐵% &! ∑𝐵%𝑧% − ∑∇𝑓% 𝑧%

𝐵$ = ALGO(𝐵$)

current idx
(𝑖!= 3)

Quasi-Newton methods are Newton-like algorithms that use
an easy-to-invert Hessian approximation to take descent steps. 
This reduces the cost for 𝑂(𝑑") to 𝑂(𝑑!).

𝑥&(' = 𝑥& − (𝐵&).'∇𝑓(𝑥&)	

An incremental approach to Quasi Newton methods: 

1. Each sample ‘𝑖’ stores    
the tuple (𝑧$ , ∇𝑓$ 𝑧' , 𝐵$).

2. Iteration 𝑡 procedure:
2a) Set 𝑗 = 𝑡 − 1 %𝑛 + 1
2b) Compute 𝑧/ , ∇𝑓(𝑧/) as 
shown to the right
2c) Compute 𝐵/ using 
custom ALGO module

Experiments
Quadratic Minimization

Logistic Regression

IQN descends fast in 
earlier epochs, while IGS 
descends fast in the later 
ones; SLIQN combines 
the best of  both worlds!

𝑛 = 20, 𝑑 = 500 𝑛 = 50000, 𝑑 = 10
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Let 𝜉 𝑍$&.' ≔ 𝑧$&.' − 𝑥⋆ , 𝜉 𝐵$&.' ≔ 𝐵$&.' − ∇!𝑓 𝑧$&.' . 
Then 𝜉(𝑍$!

& ) can be bounded by the previous 𝑛 residuals as,

One-Step Inequality (Simplified)

𝜉 𝑍*!
! = 𝒪 /

*+$

%

𝜉) 𝑍*!#$ 	 + 𝜉 𝑍*!#$ ⋅ 𝜉 𝐵*!#$

The above result is derived using an induction on t, wherein the 
closeness conditions are used to bound the relevant terms in the 
the one-step inequality

The proof  follows by substituting the linear convergence 
result back into the one-step inequality.  

The proof  follows from the mean superlinear convergence result. 
Specifically, we show that 𝑥& − 𝑥⋆ ≤ 𝜁&, where 𝜁& is a sequence 

which is defined by the recursion 𝜁& ≤ 1 − 1
23

&('
𝜁&.'.

Superlinear Convergence (Informal)
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Mean Superlinear Convergence (Informal)
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Linear Convergence (Informal)
The iterates of SIQN are locally convergent and satisfy: 
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!
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! , ∇)𝑓 𝑧*!
! = 𝒪 𝜌

!
# ,	 where 𝜎(⋅) is 

some metric on the space of matrices, and 𝜌 ∈ 0,1 .
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SLIQN applies a scaled classic BFGS update followed by a Greedy
BFGS update to obtain the Hessian approximation 

where, ?𝑢 𝐵, 𝐾 = max,
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	is greedy vector, and 𝛽! is scaling factor.


