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- , The above result is derived using an induction on t, wherein the
Overview Main Result . .
closeness conditions are used to bound the relevant terms in the
& SLION is the first incremental Quasi-Newton method Under the assumptions of smoothness, strong convexity ot the the one-step inequality
with an explicit superlinear rate, an 0(d?) cost and a functions and the Lipschitz continuity ot the Hessian, and 1f the .
superior empirical performance over other methods. initial iterate x°, and the initial Hessian approximation B i() are Mean Supetlinear Convergence (Informal)
. . . t n
& Past works either have (a) an asymptotic convergence rate, close enough to x*, and V4 f;(x°) respectively, then . U~y 1 P
: : by : k+1)(k+2 — — — . — -l __
or (b) 0(d?) cost, which is prohibitively large for high o [t—l e < (1 U ( )2( ) |x* —x™[| = O (1 . L) ” 2 H X X H
dimensional problems. lx*=x"lI<¢ln ¢" = ( — E) 1=1

The proot follows by substituting the linear convergence

Quasi-Newton Methods result back into the one-step inequality.

. . . SLIQN’s ALLGO Module
Quasi-Newton methods are Newton-like algorithms that use Q Superlinear Convergence (Informal)
an easy-to-invert Hessian approximation to take descent steps.  STIQN applies a scaled classic BEGS update followed by a Greedy .2
This reduces the cost for 0(d>) to 0(d*). BFGS update to obtain the Hessian approximation lact — x*|| = O (1 s )F
dL
Xt+1 — xt — (Bt)—1Vf(xt) Qt — BFGS((l + ﬁt)ZBitt—l’ (1 4+ ﬁt)Kt; Zl?t . Zitt—l)
. | . | o The proot follows from the mean superlinear convergence result.
X" 1s the current iterate, B" 1s the Hessian approximation. Soecificall how that ||xt — x*|| < ¢t wh -
L - t t - N t pecifically, we show that |[x* — x™|| < ¢, where {; 1s a sequence
Tet Kt = fo Vef(xt + (x*™ — x*)A) dA and the descent B; = BFGS(Q V41 (Zi ), u(Q4, V4f; (z; ))) o | u
L F41 " t th it bt which is defined by the recursion (@ < (1 — —) (1
direction U = X — X" then, . dL '
t+1 .— t ot . — pt _ Buu B"  Kuu'K’ here, u(B, K) = e d t d by ling tactor. :
Bt+1 .= BEGS(Bt, Kt,u) = Bt — o I where, u(B, K) = max; Tke, is greedy vector, and f; is scaling factor Experiments
Proof Sketch uadratic Minimization
IQN Framework 2
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Then ¢(Z ltt) can be bounded by the previous n residuals as,

descends fast in the later
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1. Each sample 1" stores s f)x . , , lzi ™y w2, ones; SLIQN combines

the tuple (z;, V£;(z1), B). | (25, 7/3(22), Ba) One-Step Inequality (Simplified) PR Rl 2 e e i 5T the best of both worlds!
G, V120, B1) \> . - S in - - n=20,d = 500 n = 50000,d = 10

2. Iteration t procedure: SZ(Zit) =0 2 S (Zi ) T st(Zi ) | f(Bi )

2a) Set j = (t — 1)%n + 1=1 Logistic Regression

2b) Compute zj, Vf (7)) as zj = (EB) ' (ZBizi — XVfi(2)) Linear Convergence (Informal) - f

shown to the right % = ALGO(E) The iterates of SIQN are locally convergent and satisty: _ y _

2¢) Compute B; using t ¢ |
custom ALGO]module il <=5 3 (Zit) =0 (pn) and 0 (Bitt, V4 f (tht)) =0 (pn) . where o (+) is -

some metric on the space of matrices, and p € (0,1).
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