

Overview

SLIQN is the first incremental Quasi-Newton method with an explicit superlinear rate, an $O(d^2)$ cost and a superior empirical performance over other methods. S Past works either have (a) an asymptotic convergence rate, or (b) $O(d^3)$ cost, which is prohibitively large for high dimensional problems.

Carnegie Nellon

University

Quasi-Newton Methods

Quasi-Newton methods are Newton-like algorithms that use an easy-to-invert Hessian approximation to take descent steps. This reduces the cost for $O(d^3)$ to $O(d^2)$.

$$x^{t+1} = x^t - (B^t)^{-1} \nabla f(x^t)$$

 x^{t} is the current iterate, B^{t} is the Hessian approximation. Let $K^t = \int_0^1 \nabla^2 f(x^t + (x^{t+1} - x^t)\lambda) d\lambda$ and the descent direction $u = x^{t+1} - x^t$ then,

 $B^{t+1} \coloneqq BFGS(B^t, K^t, u) = B^t - \frac{B^t u u^T B^t}{u^T B^t u} + \frac{K^t u u^T K^t}{u^T K^t u}$

IQN Framework

An incremental approach to Quasi Newton methods:

Sharpened Lazy Quasi-Newton Method

Aakash Lahoti^{*}, Spandan Senapati^{*}, Ketan Rajawat, Alec Koppel

 $(z_3, \nabla f_3(z_3), B_3)$ $(z_2, \nabla f_2(z_2), B_2)$

Main Result

Under the assumptions of smoothness, strong convexity of the functions and the Lipschitz continuity of the Hessian, and if the initial iterate x^0 , and the initial Hessian approximation B_i^0 are close enough to x^* , and $\nabla^2 f_i(x^0)$ respectively, then

 $|| x^{t} - x^{*} || \le \zeta \left[\frac{t-1}{n} \right]$

SLIQN's ALGO Module

SLIQN applies a scaled classic BFGS update followed by a Greedy BFGS update to obtain the Hessian approximation

$$Q^{t} = BFGS((1 + \beta_{t})^{2}B_{i_{t}}^{t-1}, (1 + \beta_{t})K^{t}, z_{i_{t}}^{t} - z_{i_{t}}^{t-1})$$

$$B_{i_t}^t = \operatorname{BFGS}(Q^t, \nabla^2 f_{i_t}(z_{i_t}^t), \overline{u})$$

where, $\bar{u}(B, K) = \max_j \frac{e_j^T B e_j}{e_i^T K e_i}$ is greedy vector, and β_t is scaling factor.

Proof Sketch

Let $\xi(Z_i^{t-1}) \coloneqq ||z_i^{t-1} - x^*||, \xi(B_i^{t-1})$ Then $\xi(Z_{i_{+}}^{t})$ can be bounded by the p

One-Step Inequality (Simplified)

$$\xi(Z_{i_t}^t) = \mathcal{O}\left(\sum_{i=1}^n \xi^2(Z_i^{t-1}) + \xi(Z_i^{t-1}) \cdot \xi(B_i^{t-1})\right)$$

Linear Convergence (Informal) The iterates of SIQN are locally conver $\xi(z_{i_t}) = \mathcal{O}\left(\rho^{\frac{t}{n}}\right) \text{ and } \sigma\left(B_{i_t}^t, \nabla^2 f(z_{i_t}^t)\right)$ some metric on the space of matrices, a

$$\zeta^{k} \leq \left(1 - \frac{\mu}{dL}\right)^{\frac{(k+1)(k+2)}{2}}$$

 $\overline{u}(Q^t, \nabla^2 f_{i_t}(z_{i_t}^t)))$

$$f^{1} := \left\| B_{i}^{t-1} - \nabla^{2} f(z_{i}^{t-1}) \right\|.$$
by order on the second second

rgent and satisfy:
)) =
$$O\left(\rho^{\frac{t}{n}}\right)$$
, where $\sigma(\cdot)$ is
and $\rho \in (0,1)$.

the one-step inequality

Mean Superlin

 $||x^t - x^\star|$

The proof follows by substituting the linear convergence result back into the one-step inequality.

Superlinear C

Experiments

USCUniversity of Southern California

The above result is derived using an induction on t, wherein the closeness conditions are used to bound the relevant terms in the

near Convergence (Informal)
$$| = \mathcal{O}\left(\left(1 - \frac{\mu}{dL}\right)^{\frac{t}{n}} \cdot \frac{1}{n} \sum_{i=1}^{n} ||x^{t-i} - x^{*}||\right)$$

Convergence (Informal)
$$x^{t} - x^{*} \parallel = \mathcal{O}\left(\left(1 - \frac{\mu}{dL}\right)^{\frac{t^{2}}{n^{2}}}\right)$$

The proof follows from the mean superlinear convergence result. Specifically, we show that $||x^t - x^*|| \leq \zeta^t$, where ζ_t is a sequence which is defined by the recursion $\zeta_t \leq \left(1 - \frac{\mu}{dI}\right)^{t+1} \zeta_{t-1}$.

Quadratic Minimization

earlier epochs, while IGS descends fast in the later ones; SLIQN combines the best of both worlds!