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Motion Prediction

Motion prediction in autonomous vehicles (AVs) tries to estimate the
future motion states of other traffic participants for a certain period
using historical observation about their surroundings.

Figure: Illustration of motion prediction. For the AV to perform an unprotected left turn, it needs to know whether the oncoming vehicle
will turn right or go straight and interfere with the AV’s left turn.
Source: Woven by Toyota.

https://medium.com/@WovenbyToyota/how-to-build-a-motion-prediction-model-for-autonomous-vehicles-6f1faf7c52af
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Motivations

Existing Works
Black-box end-to-end models with limited interpretability.
The generalizability of the trained model is not fully investigated.

Questions
How to model the multimodal trajectory distributions with
high-degree uncertainty?
How to improve the generalizability of the model?
How to incorporate interpretable latent variables in the model?

Figure: Illustration of the multimodal distribution of
future trajectory endpoints with uncertainty heatmap.
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Ideas

Observation: Cumulative Uncertainty

The destination of a future trajectory accounts for most uncertainty due
to cumulative uncertainty over time.

Observation: Hierarchical Decision Process

Drivers usually first decide where to go and then adjust their maneuvers
to reach that destination.

Approach: Target-driven Motion Prediction

Formulate the motion prediction problem into two stages: sample
plausible destinations and then complete the intermediate trajectories
from the current location to these destinations.
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Ideas

Objective: Improved Interpretability

Assume the trajectory endpoints follow a mixture of Gaussian
distributions, where means and precisions can directly reflect expectations
and uncertainty.

Objective: Improved Generalizability

Use conjugate Normal-Wishart prior for the Gaussian parameters and
construct a disentangled conditional posterior:

Posterior of mean µ is conditioned on all other traffic participants’
road geometry and history trajectories.

Posterior of precision Λ is only conditioned on the history
trajectories of other traffic participants.
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How to model the target/goal distribution?

Mixture Model The goal of a predicted participant g is assumed to
follow a Bayesian mixture of Gaussian distributions.

Context Conditioning The recognition model is conditioned on the
environment semantics s and history interaction derived from x≤H .

Training Applying Variational EM Algorithm

E Step: Evaluate mixture weights log q(znk) for each batch data n.

log q(znc) ≈ Eq(µ,Λ)

[
log p(gn | µc ,Λ

−1
c , znc)

]
M Step: Maximize the Evidence Lower Bound and update network
parameters by Stochastic Gradient Descent.

g µ

z Λ

N

Figure: Likelihood Family

gsx≤H

µ

zΛ

N

Figure: Variational Family
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How to encode the context of the surroundings?

Figure: GNeVA architecture.

Input Context Features

Road geometry (road boundaries, lane markings, etc.)
History trajectories of other participants.

Vectorized Representation: Represents both of the above as
collections of vectors on polylines.

Polyline Encoders: Encode map features m, target participant’s
history feature e, and other participants’ history features o.



Introduction Methodology Results Conclusion

How to encode the context of the surroundings?

Figure: GNeVA architecture.

Attention Modules

Objective: Model global interactions and parameterize the posterior
distributions of µ and Λ.
Implementation: A cascade of transformer encoder blocks.
Context Attention: uses e as query, concat[m, o] as key and value.
Interaction Attention: uses e as query, concat[e, o] as key and value.
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How to improve sample efficiency?

Figure: GNeVA architecture.

Objective: Determine the optimal mixture distributions to sample.

Proposal: An additional module, proxy z-posterior network,
trained to estimate the variational posterior distribution of z :

p̃(z | x≤H , s) ≈ q(z)

Training: Minimizing the cross-entropy loss.
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How to sample and generate the full trajectory?

Sampling Destination Apply Non-maximum Suppression on the
mixture of multivariate Student distributions.

p(g∗) ≈
C∑

c=1

p̃(z)Stνc−1

(
ηc ,

βc + 1

βc(νc − 1)
V−1
c

)
.

Trajectory Completion Use a cascade of MLPs for each sampled
goal to complete the intermediate trajectories with the goal and the
context attention module output as inputs.
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Benchmarks

The GNeVA model can achieve performance comparable to existing models.

Table: Results on INTERACTION valid set.

mADE6 mFDE6

DESIRE 0.32 0.88
MultiPath 0.30 0.99
TNT 0.21 0.67
GNeVA (Ours) 0.25 0.64

Table: Results on Argoverse valid set.

mADE6 mFDE6 MR6

TPCN 0.73 1.15 0.11
mmTrans 0.71 1.15 0.11
LaneGCN 0.71 1.08 -
GNeVA (Ours) 0.78 1.06 0.10
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Model Generalizability

The GNeVA model can maintain its performance when applied to an unseen scenario.

Table: Model Performance under Cross-scenario Tests

Train Scenario

Intersection Roundabout Full Dataset
Validate Scenario mADE6 mFDE6 mADE6 mFDE6 mADE6 mFDE6

Intersection 0.56 1.41 0.56 1.39 0.31 0.73
Roundabout 0.61 1.56 0.44 1.08 0.32 0.76

The GNeVA model can maintain its performance on a different dataset.

Table: Cross Dataset Evaluation Results.

Dataset Argoverse (validate) INTERACTION (validate)

mADE6 mFDE6 MR6 mADE6 mFDE6

Argoverse (train) 0.78 1.06 0.10 0.37 0.91
INTERACTION (train) 0.92 1.34 0.15 0.25 0.64
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Visualizations: In-distribution (ID) and OOD cases

Figure: ID case from CHN Merging ZS0 Figure: OOD case from Merging TR0
Figure: ID case from
USA Intersection MA

Figure: OOD case from
Intersection CM

Figure: ID case from USA Roundabout SR Figure: OOD case from Roundabout RW
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Conclusion

Summary

Proposes the Goal-based Neural Variational Agent (GNeVA), an
interpretable generative model for motion prediction with robust
generalizability to out-of-distribution cases.
Experiments on motion prediction datasets validate that the fitted
model can be interpretable and generalizable and can achieve
comparable performance to state-of-the-art results.

Future Directions

Model the full distributions for intermediate steps.
Propose an infinite mixture model for higher flexibility.
Enable multi-agent predictions from forward passing once.
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