Stochastic Methods in Variational Inequalities:
Ergodicity, Bias and Refinements
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Motivation

e Probably, any interesting ML problem can be categorized in one of the following
classical frameworks:

OPTIMIZATION UNDER UNCERTAINTY
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Motivation

« In this work, we aim to answer a question in the intersection of these three worlds:
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Our Task

For a problem N & a method Alg:

OPTIMIZATION LI

Does Alg produce an unbiased estimator

for the solution of our problem ?

Pr{Alg(IL, Z,) —> SOL(IL Z)] = 1
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Variational Inequality Problem (VIP)

Variational Inequality Problem:

Findx* € & C R¥s.t. (V(x*),x —x*) >0, forallx e &
where V: & — R%is some operator.

Example 1: Loss minimization
« V =V f: the gradient of some loss function f:RY — R
* VIP: find a stationary point of f,i.e.,V f(x*) =0

Example 2: Fixed point problem
* V(x) = F(x) — x for some function F
« VIP: solves the fixed-point equation F(x*) — x* = 0.

Example 3: Saddle-point problem
« L:RY" x R% — R, L(x,,x,): cost for player choosing x,, payoff for player x,
V= (VXIL, — szL)a VIP finds saddle point of L: min maxL(x;, x,)

X1 X3




Stochastic Methods for VIP

« Variational Inequality Problem:

Findx* € & C R¥s.t. (V(x*),x —x*) >0, forallx e &
where V: & — R%is some operator.

» Typically, the exact function V'is unknown, corrupted, biased

* The optimizer has access to stochastic estimate of V. given an input x,
V(x) = V(x) + U(x), where U( - ) is any kind of noise/sample/uncertainty

e Goal: Use stochastic estimates to find x*
€he New Hork Times
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When an Algorithm Helps Send You
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Stochastic Methods for VIP: SGDA and SEG

« Stochastic Gradient Descent Ascent (SGDA) [Nemirovski et al ‘09]:
Xirl = X — 7t<V<xt) + Ut(xt))
ey, > 0: stepsize

« For loss minimization problems: SGDA reduces to SGD

« Stochastic Extra Gradient (SEG) [Korpelevich ‘76]: at each iteration t

Xpp1/2 = X — JG(V(xz) + U i(x) ) %Extra look-ahead step

Xyl = Xp — '1t<V(xt+1/2) + Ut(xm/z)) %update
*y, >0, n,> 0: stepsizes

o Classical asymptotic convergence results with diminishing stepsizes
SGDA: = d 2
Z,YI o0, an Ztyt < oo
SEG: = 2 2 Hsieh 20
Z,y’rh 00, Ztyt n, < oo and Ztnt < oo [Hsie ]
Standard Example: y, = 1/4/1 For Simplicity & = R?
S



Our Focus: SGDA/SEG with Constant Stepsizes

o St
Practice
X+ Is it necessary to change the step-size every
time?
o St

« Using constant stepsizes:
« Might be non-convergent
« But faster converges to the neighborhood

o Goal: A fine-grained characterization of distributional
behaviors of SEG/SGDA with constant stepsize




Recent Non-asymptotic Results (Incomplete List)

» SGDA/SEG and variants: constant or diminishing stepsizes

or

« Upper-bound on mean-squared error (MSE) E ||xt —x*

2
vector-field amplitude [E ”V(x || orother metrics ...

[Gorbuno-Berard-Gidel-Loizou, 22] [Gorbunov-Loizou-Gidel ‘22] [Hsie-lutzeler-Malick-Mertikopoulos, ‘20]
[Beznosikov-Gorbunov-Berard-Loizou, '23]...

 Special case of VI: Constant stepsize SGD and Stochastic approximation

* Study {x,} from the lens of Markov chain
« Distributional convergence, characterization of stationary distribution
« SGD for strongly convex objectives: [Dieuleveut-Durmus-Bach ‘20]
e SGD for non-smooth non-convex functions: [Yu-Balasubramania-Volgushev-Erdogdu, ‘21]
e Linear stochastic approximation with Markovian data: [Huo-Chen-Xie, 23]

Today Question...What is the distribution of xt?



This Talk: Weak Quasi Strongly Monotone Operator V

* The operator V is A-weak u-quasi strongly monotone with A >0, u > 0

(V(x),x —x*) > y”x — x*”2 — 1, VxeR?.

e (Quasi-)strong monotonicity
e Resemble the notion of (quasi-)strong convexity in optimization literature

 u-quasi strongly monotone: relaxation of u-strong monotone:

V(x) = V) x = x) > pllx = x|

e A-weak

. Vx, x'e R?,

« Resemble the notion of weak convex optimization

» Assume the operator Vis at most L-linear growth, i.e.,
Vool < L+ xlp. - ¥x e RY.

For Simplicity & = R?
s



Our Analytical Approach: the Lens of Markov Chain

« Stochastic Gradient Descent Ascent (SGDA):
xin =5 = 1(V(x) + U )
 Stochastic Extra Gradient (SEG) [Korpelevich ‘76]: at iteration t
X110 = X, — y(V(xt) + U, 1p(x) ) %Extra look-ahead step
Xppl = X — ’1<V<xt+1/2) + Ut<xt+1/2)) %update
« Assumptions on noise:

e Zero-mean: ||[E[U(x) | F ]|l < bpiag;

« Bounded variance: E[|| Ut(xt)||2| F,] < 6\2/ariance + pzd(xt, I*)

« Key observations: with constant stepsizes,

. the iterates {x,}t>0 of SGDA/SEG forms a homogeneous Markov chain in R?.




Roadmap for Understanding Distributional Properties

. For a homogeneous Markov chain {xt}t>0 in continuous state space R

Minorization condition

+

Lyapunov drift condition

Harris positive
recurrence

[Meyn-Tweedie, ‘09]

Existence of a unique
stationary distribution

Law of large number

Functional central limit
theorem




First Result: Convergence up to Constant Factors

Theorem 1

Under previous assumptions, for SGDA with y satisfies y < %, then for
L
any initial point x, € R,
E[llx; —x*[I°] < (1 = c)*llxg — x™||I* + c,

A+yo?
.

withcy 2 uy,c, <

 Similar guarantee for SEG

« Byproduct of the proof: Geometric Lyapunov drift condition
E|W (x1) = W () | 7| <= BW(x) + Ble(x)

where W(x): = ||x — x*||2 + 1, and Cis bounded set.



Main Results: Harris Positive Recurrence of Markov Chain

Theorem 2

Under previous assumptions, the iterates {x;}:>o of SGDA/SEG is a Harris

positive recurrent Markov chain.

1. Itadmits a unique stationary distribution m,, ;

2. For each test function ¢p: R? > R with [[¢()]l < Ly (1 + lx]])

E[¢ (x)] — Er [#(0)]| < cp",
where p € (0,1);




Main Results: LLN and CLT of Averaged lterates

Theorem 3

Under previous assumptions, for any function ¢ with ny(lgbl) < 00,

L (UN) =ZTdp(x) - Ep [p(0)], a5

1 yT-1 d
2. (@) 31260 — B[] S N (O, Var, (6)).

* Implication: Statistical inference
* CLT results can be used for constructing confidence intervals.

* But how far E [x] is away from x*?




Main Results: Bias Characterization w.r.t. step-size

Theorem 4

Under previous assumptions, for SGDA with stepsize y < ¥,
Ey [x] — x* = yA(x") + 0(r?),
with A(x*) being independent of the stepsize y.

* Implication: Richardson-Romberg (RR) extrapolation for bias reduction
* Run SGDA with two stepsizes ¥y and 2y in parallel
* Let {ftm}, {ft(zw} be the averaging iterates
* Richardson-Romberg (RR)-extrapolated iterate:

R 1= 280 — 7Y

> 2B [x] — E
=x"+0(?)

[x] (LLN)

Bias reduced from yA(x*) + 0(y?) to 0(y?)
S




Numerical Result: Normality and Bias

Histogram after T=1000

[ Histogram
-== Mean

-Purple: y = 0.01
-Green:y =0.1

. SEG/SGDA for min-max game with min max L(xy, x,)=0
X, Xy



Numerical Results: RR for Bias Reduction in Zero-sum Games

100 5 — RR refinement
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e SGDA for min-max problems




Summary

« Stochastic VIP: Constant Stepsize + Ergodicity + Bias Reduction

« Constant stepsize: fast convergence with exponential decay rate of
optimization error

« Polyak-Ruppert average: LLN and Asymptotic normality

e RR Extrapolation: reduce bias

e Extensions:

« Beyond martingale noise: Markovian noise (Goal Multi-agent RL)

 Statistical inference: variance estimation and Cl construction
» Constant stepsize with RR extrapolation
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