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Motivation

• Probably, any interesting ML problem can be categorized in one of the following 
classical frameworks: 

Engineers’ Task
Find the model that fits 
better their problem

Statisticians’ Task
Prove that for a problem Π: 
Solution for empirical distr. 

Converges to the 
Solution for population distr. 

SOL(Π, Zn) ⟶
n→∞

SOL(Π, Z )

Optimizers’ Task
For a problem Π: 

Find an algorithm/method   
to compute efficiently  

{SOL(Π, Z )}



Motivation

• In this work, we aim to answer a question in the intersection of these three worlds:

Our Task
For a problem Π & a method Alg : 
 Does Alg produce an unbiased estimator 

for the solution of our problem ? 

Pr[Alg(Π, Zn) ⟶
n→∞

SOL(Π, Z )] = 1

Alg
Alg



Variational Inequality Problem (VIP)

• Variational Inequality Problem:  

• Example 1: Loss minimization  
• : the gradient of some loss function 
• VIP: find a stationary point of , i.e.,

• Example 2: Fixed point problem 
•  for some function 

• VIP: solves the fixed-point equation . 

• Example 3: Saddle-point problem  
•   cost for player choosing , payoff for player 

•  VIP finds saddle point of :  

𝑉 = ∇𝑓 𝑓:ℝ𝑑 → ℝ
𝑓 ∇𝑓(𝑥∗) = 0

𝑉 (𝑥) = 𝐹 (𝑥) − 𝑥 𝐹
𝐹(𝑥∗) − 𝑥∗ = 0

𝐿:ℝ𝑑1 × ℝ𝑑2 → ℝ, 𝐿(𝑥1, 𝑥2): 𝑥1 𝑥2

𝑉 = (∇𝑥1
𝐿,   − ∇𝑥2

𝐿), 𝐿 min
𝑥1

 max
𝑥2

𝐿(𝑥1, 𝑥2)

Find  for all  
where  is some operator.

x* ∈ 𝒳 ⊆ ℝd s.t.  ⟨V(x*), x − x*⟩ ≥ 0, x ∈ 𝒳
V : 𝒳 → ℝd

V(x*)

x*
x − x*

𝒳



Stochastic Methods for VIP

• Typically, the exact function  is unknown, corrupted, biased 

• The optimizer has access to stochastic estimate of given an input   
 , where  is any kind of noise/sample/uncertainty 
  

• Goal: Use stochastic estimates to find 

𝑉
𝑉 :    𝑥,

̂V(x) = V(x) + U(x) 𝑈( ⋅ )

𝑥∗

Find  for all  
where  is some operator.

x* ∈ 𝒳 ⊆ ℝd s.t.  ⟨V(x*), x − x*⟩ ≥ 0, x ∈ 𝒳
V : 𝒳 → ℝd

• Variational Inequality Problem: 



Stochastic Methods for VIP: SGDA and SEG

• Stochastic Gradient Descent Ascent (SGDA) [Nemirovski et al ‘09]: 

• stepsize 
• For loss minimization problems: SGDA reduces to SGD  

• Stochastic Extra Gradient (SEG) [Korpelevich ‘76]: at each iteration t 

                         %Extra look-ahead step 

                      %update 

• stepsizes 

• Classical asymptotic convergence results with diminishing stepsizes   

SGDA: 

SEG:  [Hsieh ‘20]

𝑥𝑡+1 = 𝑥𝑡 − 𝜸𝒕(𝑉(𝑥𝑡) + 𝑈𝑡(𝑥𝑡))
𝜸𝒕 > 0:  

𝒙𝒕+𝟏/𝟐 = 𝒙𝒕 − 𝜸𝒕(𝑉(𝑥𝑡) + 𝑈𝑡+1/2(𝑥𝑡)),

𝑥𝑡+1 = 𝒙𝒕 − 𝜼𝒕(𝑉(𝒙𝒕+𝟏/𝟐) + 𝑈𝑡(𝒙𝒕+𝟏/𝟐))
𝜸𝒕 > 𝟎,  𝜼𝒕 > 𝟎:  

∑𝑡
𝛾𝑡 = ∞,  𝑎𝑛𝑑∑𝑡

𝛾2
𝑡 < ∞

∑𝑡
𝛾𝑡𝜂𝑡 = ∞,  ∑𝑡

𝛾2
𝑡 𝜂𝑡 < ∞ 𝑎𝑛𝑑 ∑𝑡

𝜂2
𝑡 < ∞

For Simplicity 𝒳 = ℝdStandard Example: γt = 1/ t



Our Focus: SGDA/SEG with Constant Stepsizes

• Stochastic Gradient Descent Ascent (SGDA): 

• Stochastic Extra Gradient (SEG) [Korpelevich ‘76]: at each iteration t 

                        %Extra look-ahead step 

                      %update 

• Using constant stepsizes: 
• Might be non-convergent 
• But faster converges to the neighborhood 

• Goal: A fine-grained characterization of distributional 
      behaviors of SEG/SGDA with constant stepsize

𝑥𝑡+1 = 𝑥𝑡 − 𝜸(𝑉(𝑥𝑡) + 𝑈𝑡(𝑥𝑡))

𝑥𝑡+1/2 = 𝑥𝑡 − 𝜸(𝑉(𝑥𝑡) + 𝑈𝑡+1/2(𝑥𝑡)),

𝑥𝑡+1 = 𝑥𝑡 − 𝜼(𝑉(𝑥𝑡+1/2) + 𝑈𝑡(𝑥𝑡+1/2))

𝑥∗

Practice 
Is it necessary to change the step-size every 

time?



Recent Non-asymptotic Results (Incomplete List)

• SGDA/SEG and variants: constant or diminishing stepsizes  

• Upper-bound on mean-squared error (MSE)   or  

                                     vector-field amplitude  or other metrics … 
[Gorbuno-Berard-Gidel-Loizou, ‘22] [Gorbunov-Loizou-Gidel ‘22] [Hsie-Iutzeler-Malick-Mertikopoulos, ‘20]
[Beznosikov-Gorbunov-Berard-Loizou, ’23]… 

• Special case of VI: Constant stepsize SGD and Stochastic approximation 
• Study  from the lens of Markov chain  

• Distributional convergence, characterization of stationary distribution 
• SGD for strongly convex objectives: [Dieuleveut-Durmus-Bach ‘20] 
• SGD for non-smooth non-convex functions: [Yu-Balasubramania-Volgushev-Erdogdu, ‘21] 

• Linear stochastic approximation with Markovian data: [Huo-Chen-Xie, ‘23] 

𝔼  𝑥𝑡 − 𝑥∗ 2

𝔼  𝑉 (𝑥𝑡)
2
 

{𝑥𝑡}

Today Question…What is the distribution of xt?



This Talk: Weak Quasi Strongly Monotone Operator V

• The operator V is -weak -quasi strongly monotone with  

• (Quasi-)strong monotonicity 
• Resemble the notion of (quasi-)strong convexity in optimization literature 

• -quasi strongly monotone: relaxation of -strong monotone:  

• -weak 
• Resemble the notion of weak convex optimization 

• Assume the operator  is at most -linear growth, i.e., 

𝝀 𝝁 𝜆 ≥ 0, 𝜇 > 0

⟨𝑉 (𝑥), 𝑥 − 𝑥∗⟩ ≥ 𝝁 𝑥 − 𝑥∗ 2
− 𝝀,      ∀𝑥 ∈ ℝ𝑑 .

𝝁 𝝁

⟨𝑉 (𝑥) − 𝑉 (𝑥′ ), 𝑥 − 𝑥′ ⟩ ≥ 𝝁 𝑥 − 𝑥′ 
2
,      ∀𝑥,  𝑥′ ∈ ℝ𝑑 .

𝝀

𝑉 𝐿
𝑉 (𝑥) ≤ 𝐿(1 + 𝑥 ),      ∀𝑥 ∈ ℝ𝑑 .

For Simplicity 𝒳 = ℝd



Our Analytical Approach: the Lens of Markov Chain

• Stochastic Gradient Descent Ascent (SGDA): 

• Stochastic Extra Gradient (SEG) [Korpelevich ‘76]: at iteration t 

                         %Extra look-ahead step 

                      %update 

• Assumptions on noise:  
• Zero-mean: ; 

• Bounded variance:  

• Key observations: with constant stepsizes, 

• the iterates  of SGDA/SEG forms a homogeneous Markov chain in 
 

𝑥𝑡+1 = 𝑥𝑡 − 𝜸(𝑉(𝑥𝑡) + 𝑈𝑡(𝑥𝑡))

𝑥𝑡+1/2 = 𝑥𝑡 − 𝜸(𝑉(𝑥𝑡) + 𝑈𝑡+1/2(𝑥𝑡)),

𝑥𝑡+1 = 𝑥𝑡 − 𝜼(𝑉(𝑥𝑡+1/2) + 𝑈𝑡(𝑥𝑡+1/2))

∥𝔼[Ut(xt) |ℱt]∥ ≤ bbias
𝔼[∥Ut(xt)∥2|ℱt] ≤ σ2

variance + ρ2d(xt, 𝒳*)

{𝑥𝑡}𝑡≥0
ℝ𝑑 .



Roadmap for Understanding Distributional Properties

• For a homogeneous Markov chain  in continuous state space :{𝑥𝑡}𝑡≥0
ℝ𝑑

Harris positive 
recurrence

Existence of a unique 
stationary distribution

Law of large number 

Functional central limit 
theorem

Minorization condition 

Lyapunov drift condition

[Meyn-Tweedie, ‘09] 



First Result: Convergence up to Constant Factors

• Similar guarantee for SEG 

• Byproduct of the proof: Geometric Lyapunov drift condition

Theorem 1

Under previous assumptions, for SGDA with  step-size satisfying  then for 
any initial point ,  

with 

  

where  and C is bounded set.

𝔼[𝑊(𝑥𝑡+1) − 𝑊(𝑥𝑡) ∣ ℱ𝑡] ≤ − 𝛽𝑊(𝑥𝑡) + 𝑏𝕀𝐶(𝑥)

𝑊 (𝑥): = 𝑥  − 𝑥∗ 2
+ 1,

γ = 𝒪(1/L)



Main Results: Harris Positive Recurrence of Markov Chain

Theorem 2
Under previous assumptions, the iterates  of SGDA/SEG is a Harris positive 
recurrent Markov chain.  
1. It admits a unique stationary distribution  
2. For each test function  with ,

        where 



Main Results: LLN and CLT of Averaged IteratesMain Results: LLN and CLT of Averaged Iterates

Theorem 3

Under previous assumptions, for any function 𝜙 with 𝜋𝛾 𝜙 < ∞,

1. (LLN) 1
𝑇
σ𝑡=0
𝑇−1𝜙(𝑥𝑡) → 𝔼𝜋𝛾 𝜙 𝑥 , a.s.;                                                    

2. (CLT) 1
𝑇
σ𝑡=0
𝑇−1 𝜙 𝑥𝑡 − 𝔼𝜋𝛾 𝜙 𝑥 →

𝑑
𝑁(0, 𝑉𝑎𝑟𝜋𝛾 𝜙 ).     

• Implication: Statistical inference
• CLT results can be used for constructing confidence intervals. 

• But how far 𝔼𝜋𝛾 𝑥 is away from 𝑥∗?



Main Results: Bias Characterization w.r.t. step-size



Numerical Result: Normality and Bias

• SEG/SGDA for min-max game with =0 min
𝑥1

 max 
𝑥2

𝐿(𝑥1, 𝑥2)

-Purple:  
-Green: 

𝜸 = 𝟎 . 𝟎𝟏
𝜸 = 𝟎 . 𝟏

Histogram after T=1000



Numerical Results: RR for Bias Reduction in Zero-sum Games

• SGDA for min-max problems



Summary

• Stochastic VIP: Constant Stepsize + Ergodicity + Bias Reduction 

• Constant stepsize: fast convergence with exponential decay rate of 
optimization error 

• Polyak-Ruppert average: LLN and Asymptotic normality  

• RR Extrapolation: reduce bias 

• Extensions: 
• Beyond martingale noise: Markovian noise (Goal Multi-agent RL) 
• Statistical inference: variance estimation and CI construction 

• Constant stepsize with RR extrapolation




