Faster Recalibration of an Online Predictor via Approachability Robert Kleinberg¹ Princewill Okoroafor¹ Wen Sun¹ ¹ Cornell University

Setup

Online Recalibration Problem

Each of $t \in \{1, ..., T\}$ rounds:

- Nature selects context $x_t \in \mathbb{R}^d$
- Oracle predicts $q_t \in [0,1]$
- Algorithm
 - observes x_t , q_t
- predicts $p_t \in [0,1]$
- Nature reveals $y_t \in \{0,1\}$

Learning Objectives

- Low-regret with respect a fixed proper scoring rule: $\frac{1}{T} \sum_{t=1} S(p_t, y_t) - S(q_t, y_t)$
- ℓ_1 Calibration Error:

 $\sum_{v \in \{p_1, \dots, p_T\}} \left| \frac{1}{\tau} \sum_{t=1} (y_t - v) \cdot \mathbb{I}[p_t = v] \right|$

Model	Calibrati on	Regret	Method
Online calibration [Abernethy et al 2011]	$0(T^{\frac{2}{3}})$	N/A	Blackwel approacl y
Online recalibration [Kuleshov et al 2017]	$0(T^{\frac{3}{4}})$	$0(T^{\frac{3}{4}})$	Internal minimiza
Online recalibration [this work]	$O(T^{\frac{2}{3}})$ tunable t	$O(T^{\frac{1}{2}})$ radeoff	Blackwel approacl y theore

Overview

Challenges: • Calibration might require algorithm to deviate from oracle predictions Algorithm must achieve no-regret i.e deviations should only improve predictions **Our Work:** We show an algorithm with a tunable linear tradeoff that achieves calibration error $O(T^{2x})$ and regret $O(T^{2x})$ for any $x \in \left|\frac{1}{2}, \frac{2}{5}\right|$ **Solution Outline Reduction to Two Player Vector Payoff Game** [Abernethy et al] **Player 1** selects sample $y_t \in [0,1]$ **Player 2** chooses $w_t \in \Delta_{m+1}$ Payoff vector $u(w_t, q_t, y_t)$ $w_t(0)\left(y_t - \frac{0}{m}\right)$ $w_t(m)\left(y_t-\frac{m}{m}\right)$ $\left(\sum_{i\in[m+1]}w_t(i)\left(S\left(\frac{i}{m},y_t\right)-S(\frac{i}{m},y_t\right)\right)\right)$ Goal: Is there a strategy for player 2 that guarantees that the average payoff vector converges to the set? $\left\{ (x,z) \in \mathbb{R}^{m+1} \times \mathbb{R} \mid \left| |x| \right|_{1} \le \right\}$

Constructing a Halfspace Oracle Given halfspace $\theta \in K$, we must construct $w_t \in K$ Δ_{m+1} such that $\langle \theta, u(w_t, q_t, y_t) \rangle \leq \epsilon$

ll's habilit

regret ation

ll's habilit m

$$(q_t, y_t))$$

$$\left\{\frac{1}{m}, z \leq \frac{4L_s}{m^2}\right\}$$

$$F_{i} = \begin{bmatrix} f(i,0)\\f(i,1) \end{bmatrix} \text{ where } f(i,$$

$$w_{t}(j) = \frac{f(j+1)}{f(j,0) - f(j+1)}$$

$$w_{t}(j+1) = \frac{f(j+1)}{f(j,0) - f(j+1)}$$

Find index j where F_i is in the third quadrant or crosses from second to fourth quadrant

Input: some natural number $m \geq \sqrt{4L_S}$ Initialize: $\boldsymbol{\theta}_1 = \mathbf{0}, \mathbf{w}_1 \in \Delta_{m+1}$ for $t = 1, \ldots, T$ do Set $l_t := -\ell_t(\mathbf{w}_t, y_t)$ // Online Gradient Descent step end for

Algorithm 1 Online Recalibration Algorithm

Observe q_t from black-box prediction oracle Sample $i_t \sim \mathbf{w}_t$, predict $p_t = \frac{i_t}{m}$, observe y_t Query learning algorithm: $\theta_{t+1} \leftarrow \text{OGD}(\theta_t | l_t)$ Query halfspace oracle: $\mathbf{w}_{t+1} \leftarrow \text{Approach}(\boldsymbol{\theta}_{t+1})$ // Obtain $\mathbf{w}_{t+1} \in \Delta_{m+1}$ from $\boldsymbol{\theta}_{t+1}$