Best-of-Both-Worlds Algorithms for Linear Contextual Bandits

Yuko Kuroki Alberto Rumi Taira Tsuchiya Fabio Vitale Nicolò Cesa-Bianchi

AISTATS 2024

Multi-Armed Bandits

- *K*-arms (actions)
- ${\sf Environment}$ determines the losses to arms $\ell_t = (\ell_t(1), \ell_t(2), \ldots, \ell_t(K)) \in \mathbb{R}^K$ at each time step $t = 1, 2, \ldots, T$ hidden to the learner

At each time step $t = 1, 2, \ldots, T$

- **Learner** selects an action $A_t \in [K]$ and incurs a loss $\ell_t(A_t)$
- **Learner** observes a feedback: Only the loss for chosen arm *ℓ^t* (*At*) is revealed

Multi-Armed Bandits

- *K*-arms (actions)
- ${\sf Environment}$ determines the losses to arms $\ell_t = (\ell_t(1), \ell_t(2), \ldots, \ell_t(K)) \in \mathbb{R}^K$ at each time step $t = 1, 2, ..., T$ hidden to the learner

At each time step $t = 1, 2, \ldots, T$

- **Learner** selects an action $A_t \in [K]$ and incurs a loss $\ell_t(A_t)$
- **Learner** observes a feedback: Only the loss for chosen arm *ℓ^t* (*At*) is revealed

Goal is to minimize the expected **regret** against the best action in hindsight

$$
R_T := \mathbb{E}\left[\sum_{t=1}^T \ell_t\left(A_t\right) - \sum_{t=1}^T \ell_t\left(a^*\right)\right], \quad a^* := \argmin_{a \in [K]} \mathbb{E}\left[\sum_{t=1}^T \ell_t\left(a\right)\right]
$$

cumulative losses of the learner cumulative losses of the best action

Contextual Information in Real Worlds

We often have access to **contextual information** in various domains such as online advertising, medical diagnosis, and finance.

Example: Recommendation Systems

- Context: User's profile or past purchase history
- Goal: Providing personalized product recommendation

Linear Contextual Bandits

At each time step $t = 1, 2, \ldots, T$

- \exists Environment determines a loss vector $\theta_{t,a} \in \mathbb{R}^d$ for each $a \in [K]$
- Environment draws the **context vector** *X^t ∼ D*
- \bullet Learner observes current context X_t and chooses action $A_t \in [K]$
- Learner incurs and observes $\ell_t(X_t,A_t)$

Linear Contextual Bandits

At each time step $t = 1, 2, \ldots, T$

- \exists Environment determines a loss vector $\theta_{t,a} \in \mathbb{R}^d$ for each $a \in [K]$
- Environment draws the **context vector** *X^t ∼ D*
- \bullet Learner observes current context X_t and chooses action A_t ∈ $[K]$
- Learner incurs and observes $\ell_t(X_t,A_t)$

Goal is to minimize the expected regret against the optimal policy *π ∗* :

$$
R_T := \max_{\pi^* \in \Pi} \mathbb{E}\left[\sum_{t=1}^T \left(\ell_t(X_t, A_t) - \ell_t(X_t, \pi^*(X_t))\right)\right],
$$

where $\Pi = {\pi : \mathcal{X} \rightarrow [K]}$ is the set of all deterministic policies and $\mathcal{X} \subseteq \mathbb{R}^d$ is the context space

Adversarial and Stochastic Regimes

Adversarial Regime

 $\ell_t(X_t, a) := \langle X_t, \theta_{t,a} \rangle$, where $\theta_{t,a}$ for $a \in [K]$ is chosen by an adversary

Stochastic Regime

 $\ell_t(X_t, a) := \langle X_t, \theta_a \rangle + \varepsilon_t(X_t, a),$ where θ_a for $a \in [K]$ is fixed and unknown; $\varepsilon_t(X_t,a)$ is bounded zero-mean noise

Adversarial and Stochastic Regimes

Adversarial Regime

 $\ell_t(X_t, a) := \langle X_t, \theta_{t,a} \rangle$, where $\theta_{t,a}$ for $a \in [K]$ is chosen by an adversary

Stochastic Regime

 $\ell_t(X_t, a) := \langle X_t, \theta_a \rangle + \varepsilon_t(X_t, a),$ where θ_a for $a \in [K]$ is fixed and unknown; $\varepsilon_t(X_t,a)$ is bounded zero-mean noise

(Corrupted Stochastic Regime)

Intermediate regime between adversarial and stochastic one

 $\ell_t(X_t, a) := \langle X_t, \theta_{t,a} \rangle + \varepsilon_t(X_t, a)$, where $\theta_{t,a}$ satisfies $\sum_{t=1}^T \max_{a \in [K]} \|\theta_{t,a} - \theta_a\|_2 \leq C$ for fixed and unknown $\theta_1, \ldots, \theta_K$ and unknown **corruption level** $C > 0$

Best-of-Both-Worlds Algorithms

Research Question

 R_T

Can we establish an algorithm achieving optimal rates in both **stochastic** and **adversarial** regimes **without any prior knowledge of the environment**?

First BoBW Results for Linear Contextual Bandits

Main Contributions (Informal)

 Λ^* : data-dependent quantity (cumulative second moment for the losses incurred by the algorithm)

Follow-the-Regularized-Leader (FTRL)

At each round *t*:

$$
p_t(\cdot|X_t) := \argmin_{r \in \Delta([K])} \left\{ \sum_{s=1}^{t-1} \left\langle r, \tilde{\ell}_s(X_t) \right\rangle + \psi_t(r) \right\}
$$

estimated cumulative losses up to previous rounds

$$
\tilde{\ell}_s(X_t):=(\langle X_t,\tilde{\bm{\theta}}_{s,1}\rangle,\ldots,\langle X_t,\tilde{\bm{\theta}}_{s,K}\rangle),\ \tilde{\bm{\theta}}_{s,a} \text{ is the (biased) estimate for }\bm{\theta}_{s,a}.
$$

Shannon entropy regularizer: $\psi_t(r) = -\eta_t^{-1} \sum_{a \in [K]} r_a \ln r_a$

Loss Estimation

The estimator of
$$
\theta_{t,a}
$$
 is $\tilde{\theta}_{t,a} := \hat{\Sigma}_{t,a}^+ X_t \ell_t(X_t, A_t) \mathbb{1}[A_t = a]$

where $\hat{\Sigma}_{t,a}^+$ is the biased estimate of $\Sigma_{t,a}^{-1}:=\mathbb{E}[{\mathbb 1}\left[A_t=a\right]X_tX_t^\top\mid\mathcal{F}_{t-1}]^{-1}$

Entropy-dependent Learning Rate

Update Rule for Learning Rate (Informal)

$$
\eta_{t+1}^{-1} \gets \eta_t^{-1} + \frac{c}{\sqrt{1+(\log K)^{-1}\Sigma_{s=1}^t H(p_s(\cdot|X_s))}}
$$

t)

so that we control adversarial regime: η_{t}^{-1} would become $\mathcal{O}(t)$ *√* ${\sf stochastic \hspace{1mm} regime: \hspace{1mm} \eta_t^{-1}$ would become $\mathcal{O}(t)$ *H*: Shannon entropy

FTRL Analysis for i.i.d. Sample of Context $X_0 \sim \mathcal{D}$

(Expected regret for a fixed X_0)

$$
\leq \mathbb{E}\left[\sum_{t=1}^T \left(\eta_{t+1}^{-1} - \eta_t^{-1}\right) H(p_{t+1}(\cdot|X_0))\right] + \mathbb{E}\left[\sum_{t=1}^T \eta_t \cdot \text{(variance of loss estimates)}\right]
$$

(+prob. dependent constant)

Main Result

Theorem

FTRL with Shannon entropy achieves:

$$
R_T^{\text{adv}} = \mathcal{O}\left(\sqrt{T\left(d + \frac{\log T}{\lambda_{\min}(\Sigma)}\right)K\log(K)\log(T)}\right)
$$
 for the adversarial regime

$$
R_T^{\text{sto}} = \mathcal{O}\left(\frac{K}{\Delta_{\min}}\left(d + \frac{\log T}{\lambda_{\min}(\Sigma)}\right)\log(KT)\log T\right)
$$
 for the stochastic regime

$$
R_T^{\text{cor}} = \mathcal{O}\left(R_T^{\text{sto}} + \sqrt{CR_T^{\text{sto}}}\right)
$$
 for the corrupted stochastic regime

 Δ_{min} : minimum suboptimality gap over the context space $\lambda_{\min}(\Sigma) := \text{minimum eigenvalue of } \mathbb{E}[XX^\top]$ *C*: corruption level

Our bound recovers the best-known result in the adversarial regime of Neu and Olkhovskaya (2020) and Zierahn et al. (2023) up to log-factors **10** $\frac{10}{14}$

Benefits of Data-dependent Regret Bounds

 $L^* := \mathbb{E}\big[\Sigma_{t=1}^T \ell_t(X_t, \pi^*(X_t))\big] \leq T$

Cumulative loss of the optimal policy

 $\bar{\Lambda} := \mathbb{E} \big[\Sigma_{t=1}^T (\ell_t(X_t, A_t) - \langle X_t, \bar{\theta} \rangle)^2 \big] \; (\leq T)$ with average vector θ **Cumulative variance of a policy**

Overview

Additional Assumptions

- The learner has access to $\Sigma_{t,a}^{-1}$ to get unbiased estimators.
- *D* is a log-concave distribution **to make the unbiased estimators stable**.

Techniques

Optimistic FTRL Continuous Exponential Weights

Black-Box Reduction Dann, Wei, and Zimmert (2023)

Data-dependent BoBW

Main Results on Deta-Dependent BoBW

Theorem

 Λ^* : cumulative variance of a policy w.r.t. a predictable loss sequence $m_{t,a}$ for $a\in[K]$ *L ∗* : cumulative loss of the best policy

 Λ : cumulative second moment for the losses incurred by the algorithm

- Our result has extra *[√] d* in the adversarial regime (Olkhovskaya et al. (2023)).
- \bullet For a choice of $m_{t,a}$, we use the online optimization method as in Ito et al. (2020).
- This allows a single algorithm to achieve first/second-order bounds simultaneously.

First BoBW Bounds for Linear Contextual Bandits Stochastic Adversarial *[√]* \sqrt{C} **Worst-case** $\left(\frac{dK \text{poly}\log(dKT)}{\Delta_{\min}}\right)$ *O* $\left(\begin{array}{c} \end{array} \right)$ $TK(d + \log T) \log(T) \log(K)$ \setminus ✓ Data-dependent *O* $\sqrt{ }$ $\frac{(dK)^2 \text{poly}\log(dKT)}{\Delta_{\min}}$ $\tilde{\mathcal{O}}\left(dK\sqrt{\Lambda^*}\right)$ ✓ First/second order $\sqrt{ }$ $\frac{(dK)^2 \text{poly}\log(dKT)}{\Delta_{\min}}$ $\tilde{\mathcal{O}}\left(dK\sqrt{\min\{L^*,\bar{\Lambda}\}}\right)$ ✓ *L ∗* : cumulative loss of the best action

 $\Lambda^*(\bar\Lambda)$: cumulative second moment for the losses incurred by the algorithm

First BoBW Bounds for Linear Contextual Bandits Stochastic Adversarial *[√]* \sqrt{C} **Worst-case** $\left(\frac{dK \text{poly}\log(dKT)}{\Delta_{\min}}\right)$ *O* $\left(\begin{array}{c} \end{array} \right)$ $TK(d + \log T) \log(T) \log(K)$ \setminus ✓ Data-dependent *O* $\left(\frac{(dK)^2 \text{poly}\log (dKT)}{\Delta_{\min}}\right)$ $\tilde{\mathcal{O}}\left(dK\sqrt{\Lambda^*}\right)$ ✓ First/second order $\sqrt{ }$ $\frac{(dK)^2 \text{poly}\log(dKT)}{\Delta_{\min}}$ $\tilde{\mathcal{O}}\left(dK\sqrt{\min\{L^*,\bar{\Lambda}\}}\right)$ ✓ *L ∗* : cumulative loss of the best action

 $\Lambda^*(\bar\Lambda)$: cumulative second moment for the losses incurred by the algorithm

Thank you!

Appendix

Loss Estimation

Loss Estimation

The estimator of
$$
\theta_{t,a}
$$
 is $\tilde{\theta}_{t,a} := \hat{\Sigma}_{t,a}^+ X_t \ell_t (X_t, A_t) \mathbb{1} [A_t = a], \quad \forall a \in [K],$

where $\hat{\mathbf{\Sigma}}^+_{t,a}$ is the biased estimate of $\Sigma_{t,a}^{-1} := \mathbb{E}_t[\mathbb{1} \left[A_t = a \right] X_t X_t^\top]^{-1}.$

 $\mathsf{Estimate}$ $\Sigma_{t,a}^{-1}$

Use **simulator to generate i.i.d. contexts** from distribution *D*

(Matrix Geometric Resampling with Adaptive Iteration Numer *Mt*)

Unique Challenges

- We need to deal with a biased estimate of the loss vector
- We require redesigning adaptive learning rates, exploration rates, and iteration numbers of MGR. ($\gamma_t = \alpha_t \cdot \eta_t$, $M_t = \left[\frac{4K}{\gamma_t \lambda_{\min}}\right]$ $\frac{4K}{\gamma_t \lambda_{\min}(\Sigma)} \log(t)$ and $\alpha_t = \frac{4K \log(t)}{\lambda_{\min}(\Sigma)}$ $\frac{4K \log(t)}{\lambda_{\min}(\boldsymbol{\Sigma})}$).

Continuous MWU Method

OFTRL: learner has access to a loss predictor $m_{t,a} \in \mathbb{R}^d$ for each action a at round $t.$

MWU

The learner computes the density $p_t(\cdot|X_t)$ supported on $\Delta([K])$ and based on the continuous exponential weights $w_t(\cdot|X_t)$:

$$
w_t(r|X_t) := \exp\left(-\eta_t\left(\sum_{s=1}^{t-1} \langle r, \widehat{\ell}_s(X_t) \rangle + \langle r, m_t(X_t) \rangle\right)\right)
$$

$$
p_t(r|X_t) := \frac{w_t(r|X_t)}{\int_{\Delta([K])} w_t(y|X_t) dy}, \quad \forall r \in \Delta([K]).
$$

Conputational Time

The continuous exponential weights incur a high (yet polynomial) sampling cost, resulting in $\mathcal{O}\big((K^5 + \log T) g_{\mathbf{\Sigma}_t}\big)$ per round running time, where $g_{\mathbf{\Sigma}_t}$ is the time to construct the covariance matrix for each round

,

Data-Dependent Importance Weighting Stability

Data-Dependent Importance Weighting Stability

Given an adaptive sequence of weights $q_1, q_2, \ldots \in (0, 1]$, the learner observes the feedback in round t with probability q_t . Let upd $_t$ be 1 if observation occurs and 0 otherwise. Then, for any $\tau \in [T]$ and $a^* \in [K]$, $R_{\tau}(a^*) = \mathbb{E}\left[\Sigma_{t=1}^{\tau}\ell_t(X_t, A_t) - \ell_t(X_t, a^*)\right]$ is bounded by

$$
\mathcal{O}\left(\sqrt{\kappa_1(d,K,T)}\left(\sqrt{\mathbb{E}\left[\Sigma_{t=1}^{\tau}\frac{\mathsf{upd}_t\cdot(\ell_t(X_t,A_t)-\langle X_t,m_{t,A_t}\rangle)^2}{q_t^2}\right]}+\mathbb{E}\left[\frac{\sqrt{50dK}}{\min_{j\leq \tau}q_j}\right]\right)\right).
$$