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Multi-Armed Bandits

K-arms (actions)
Environment determines the losses to arms ℓt = (ℓt(1), ℓt(2), . . . , ℓt(K)) ∈ RK at
each time step t = 1, 2, . . . , T hidden to the learner

At each time step t = 1, 2, . . . , T
Learner selects an action At ∈ [K] and incurs a loss ℓt (At)
Learner observes a feedback: Only the loss for chosen arm ℓt (At) is revealed

Goal is to minimize the expected regret against the best action in hindsight

RT := E

[
T∑
t=1

ℓt (At)−
T∑
t=1

ℓt (a∗)
]
, a∗ := argmin

a∈[K]
E

[
T∑
t=1

ℓt (a)
]

cumulative losses of the learner cumulative losses of the best action
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Contextual Information in Real Worlds
We often have access to contextual information in various domains such as online
advertising, medical diagnosis, and finance.

Example: Recommendation Systems
Context: User’s profile or past purchase history
Goal: Providing personalized product recommendation
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Linear Contextual Bandits
At each time step t = 1, 2, . . . , T

Environment determines a loss vector θt,a ∈ Rd for each a ∈ [K]
Environment draws the context vector Xt ∼ D
Learner observes current context Xt and chooses action At ∈ [K]
Learner incurs and observes ℓt(Xt, At)

Goal is to minimize the expected regret against the optimal policy π∗:

RT := max
π∗∈Π

E

[
T∑
t=1

(
ℓt(Xt, At)− ℓt(Xt, π

∗(Xt))
)]

,

where Π = {π : X → [K]} is the set of all deterministic policies
and X ⊆ Rd is the context space
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Adversarial and Stochastic Regimes

Adversarial Regime
ℓt(Xt, a) := ⟨Xt,θt,a⟩, where θt,a for a ∈ [K] is chosen by an adversary

Stochastic Regime
ℓt(Xt, a) := ⟨Xt,θa⟩+ εt(Xt, a), where θa for a ∈ [K] is fixed and unknown;
εt(Xt, a) is bounded zero-mean noise

(Corrupted Stochastic Regime)
Intermediate regime between adversarial and stochastic one
ℓt(Xt, a) := ⟨Xt,θt,a⟩+ εt(Xt, a), where θt,a satisfies

∑T
t=1 maxa∈[K] ∥θt,a − θa∥2 ≤ C

for fixed and unknown θ1, . . . , θK and unknown corruption level C > 0
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Best-of-Both-Worlds Algorithms
Research Question
Can we establish an algorithm achieving optimal rates in both stochastic and
adversarial regimes without any prior knowledge of the environment?

Time Horizon T

Re
gr
et

R
T

Stochastic Regime

Exp3 – O(
√

T )
UCB – O(logT )

BoBW– O(poly(logT ))

Time Horizon T
Re

gr
et

R
T

Adversarial Regime

Exp3 – O(
√

T )
UCB – O(T )

BoBW – Õ(
√

T )
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First BoBW Results for Linear Contextual Bandits

Main Contributions (Informal)

Stochastic Adversarial

Worst-case O (dKpoly log(T )) Õ
(√

dK T
)

Data-dependent O ((dK)2poly log(T )) Õ
(
dK
√
Λ∗
)

Λ∗: data-dependent quantity (cumulative second moment for the losses incurred by the algorithm)
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Follow-the-Regularized-Leader (FTRL)
At each round t:

pt(·|Xt) := argmin
r∈∆([K])

{
t−1∑
s=1
⟨r, ℓ̃s(Xt)⟩+ ψt(r)

}
estimated cumulative losses

up to previous rounds

ℓ̃s(Xt) := (⟨Xt, θ̃s,1⟩, . . . , ⟨Xt, θ̃s,K⟩), θ̃s,a is the (biased) estimate for θs,a.

Shannon entropy regularizer: ψt(r) = −η−1
t

∑
a∈[K] ra ln ra

Loss Estimation
The estimator of θt,a is θ̃t,a := Σ̂+

t,aXtℓt(Xt, At)1 [At = a]

where Σ̂+
t,a is the biased estimate of Σ−1

t,a := E[1 [At = a]XtX
⊤
t | Ft−1]−1
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Entropy-dependent Learning Rate
Update Rule for Learning Rate (Informal)

η−1
t+1 ← η−1

t + c√
1 + (logK)−1Σt

s=1H(ps(·|Xs))
so that we control

adversarial regime: η−1
t would become O(

√
t)

stochastic regime: η−1
t would become O(t) H: Shannon entropy

FTRL Analysis for i.i.d. Sample of Context X0 ∼ D

(Expected regret for a fixed X0)

≤ E

[
T∑
t=1

(
η−1
t+1 − η

−1
t

)
H(pt+1(·|X0))

]
+ E

[
T∑
t=1

ηt · (variance of loss estimates)
]

(+prob. dependent constant)
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Main Result
Theorem
FTRL with Shannon entropy achieves:

Radv
T = O

(√
T

(
d+ log T

λmin(Σ)

)
K log(K) log(T )

)
for the adversarial regime

Rsto
T = O

(
K

∆min

(
d+ log T

λmin(Σ)

)
log(KT ) log T

)
for the stochastic regime

Rcor
T = O

(
Rsto

T +
√
CRsto

T

)
for the corrupted stochastic regime

∆min: minimum suboptimality gap over the context space
λmin(Σ) := minimum eigenvalue of E[XX⊤] C: corruption level

Our bound recovers the best-known result in the adversarial regime of Neu and
Olkhovskaya (2020) and Zierahn et al. (2023) up to log-factors 10 / 14



Benefits of Data-dependent Regret Bounds
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L∗ := E
[
ΣT
t=1ℓt(Xt, π

∗(Xt))
]
(≤ T )

Cumulative loss of the optimal policy
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Λ̄ := E
[
ΣT
t=1(ℓt(Xt, At)−⟨Xt, θ̄⟩)2

]
(≤ T )

with average vector θ̄
Cumulative variance of a policy
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Overview

Additional Assumptions
The learner has access to Σ−1

t,a to get unbiased estimators.
D is a log-concave distribution to make the unbiased estimators stable.

Techniques

Optimistic FTRL
Continuous Exponential Weights

Black-Box Reduction
Dann, Wei, and Zimmert (2023)

Data-dependent
BoBW
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Main Results on Deta-Dependent BoBW
Theorem

Stochastic Adversarial
√
C

Main Theorem O
(

(dK)2poly log(dKT )
∆min

)
Õ
(
dK
√
Λ∗
)

3

Corollary O
(

(dK)2poly log(dKT )
∆min

)
Õ
(
dK
√

min{L∗, Λ̄}
)

3

Λ∗: cumulative variance of a policy w.r.t. a predictable loss sequence mt,a for a ∈ [K]
L∗: cumulative loss of the best policy
Λ̄: cumulative second moment for the losses incurred by the algorithm

Our result has extra
√
d in the adversarial regime (Olkhovskaya et al. (2023)).

For a choice of mt,a, we use the online optimization method as in Ito et al. (2020).
This allows a single algorithm to achieve first/second-order bounds simultaneously.
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Summary

First BoBW Bounds for Linear Contextual Bandits

Stochastic Adversarial
√
C

Worst-case O
(

dKpoly log(dKT )
∆min

)
O
(√

TK
(
d+ log T

)
log(T ) log(K)

)
3

Data-dependent O
(

(dK)2poly log(dKT )
∆min

)
Õ
(
dK
√
Λ∗
)

3

First/second order O
(

(dK)2poly log(dKT )
∆min

)
Õ
(
dK
√
min{L∗, Λ̄}

)
3

L∗: cumulative loss of the best action
Λ∗(Λ̄): cumulative second moment for the losses incurred by the algorithm

Thank you!
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Loss Estimation
Loss Estimation
The estimator of θt,a is θ̃t,a := Σ̂+

t,aXtℓt(Xt, At)1 [At = a] , ∀a ∈ [K],

where Σ̂+
t,a is the biased estimate of Σ−1

t,a := Et[1 [At = a]XtX
⊤
t ]−1.

Estimate Σ−1
t,a

Use simulator to generate i.i.d. contexts from distribution D
(Matrix Geometric Resampling with Adaptive Iteration Numer Mt)

Unique Challenges
We need to deal with a biased estimate of the loss vector
We require redesigning adaptive learning rates, exploration rates, and iteration
numbers of MGR. (γt = αt · ηt, Mt =

⌈
4K

γtλmin(Σ) log(t)
⌉
and αt = 4K log(t)

λmin(Σ) ).
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Continuous MWU Method
OFTRL: learner has access to a loss predictor mt,a ∈ Rd for each action a at round t.
MWU
The learner computes the density pt(·|Xt) supported on ∆([K]) and based on the
continuous exponential weights wt(·|Xt):

wt(r|Xt) := exp
(
−ηt

(
t−1∑
s=1
⟨r, ℓ̂s(Xt)⟩+ ⟨r,mt(Xt)⟩

))
,

pt(r|Xt) :=
wt(r|Xt)∫

∆([K])wt(y|Xt) dy
, ∀r ∈ ∆([K]).

Conputational Time
The continuous exponential weights incur a high (yet polynomial) sampling cost,
resulting in O

(
(K5 + log T )gΣt

)
per round running time, where gΣt is the time to

construct the covariance matrix for each round
3 / 4



Data-Dependent Importance Weighting Stability

Data-Dependent Importance Weighting Stability
Given an adaptive sequence of weights q1, q2, . . . ∈ (0, 1], the learner observes the
feedback in round t with probability qt. Let updt be 1 if observation occurs and 0
otherwise. Then, for any τ ∈ [T ] and a∗ ∈ [K],
Rτ (a∗) = E [Στ

t=1ℓt(Xt, At)− ℓt(Xt, a
∗)] is bounded by

O
(√

κ1(d,K, T )
(√

E
[
Στ

t=1
updt · (ℓt(Xt, At)− ⟨Xt,mt,At⟩)2

q2t

]
+ E

[ √
50dK

minj≤τ qj

]))
.
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