Best-of-Both-Worlds Algorithms for Linear Contextual Bandits

Yuko Kuroki Alberto Rumi Taira Tsuchiya

Fabio Vitale

Nicolò Cesa-Bianchi

UNIVERSITÀ **DEGLI STUDI**

Multi-Armed Bandits

- *K*-arms (actions)
- Environment determines the losses to arms $\ell_t = (\ell_t(1), \ell_t(2), \dots, \ell_t(K)) \in \mathbb{R}^K$ at each time step $t = 1, 2, \dots, T$ hidden to the learner

At each time step $t = 1, 2, \dots, T$

- Learner selects an action $A_t \in [K]$ and incurs a loss $\ell_t \left(A_t \right)$
- Learner observes a feedback: Only the loss for chosen arm $\ell_t(A_t)$ is revealed

Multi-Armed Bandits

- *K*-arms (actions)
- Environment determines the losses to arms $\ell_t = (\ell_t(1), \ell_t(2), \dots, \ell_t(K)) \in \mathbb{R}^K$ at each time step $t = 1, 2, \dots, T$ hidden to the learner

At each time step $t = 1, 2, \dots, T$

- Learner selects an action $A_t \in [K]$ and incurs a loss $\ell_t(A_t)$
- Learner observes a feedback: Only the loss for chosen arm $\ell_t(A_t)$ is revealed

Goal is to minimize the expected regret against the best action in hindsight

$$R_T := \mathbb{E}\left[\sum_{t=1}^T \ell_t\left(A_t
ight) - \sum_{t=1}^T \ell_t\left(a^*
ight)
ight], \quad a^* := rg \min_{a \in [K]} \mathbb{E}\left[\sum_{t=1}^T \ell_t\left(a
ight)
ight]$$

cumulative losses of the learner cumulative losses of the best action

Contextual Information in Real Worlds

We often have access to **contextual information** in various domains such as online advertising, medical diagnosis, and finance.

Example: Recommendation Systems

- Context: User's profile or past purchase history
- Goal: Providing personalized product recommendation

Linear Contextual Bandits

At each time step $t = 1, 2, \dots, T$

- Environment determines a loss vector $\theta_{t,a} \in \mathbb{R}^d$ for each $a \in [K]$
- Environment draws the **context vector** $X_t \sim \mathcal{D}$
- Learner observes current context X_t and chooses action $A_t \in [K]$
- Learner incurs and observes $\ell_t(X_t, A_t)$

Linear Contextual Bandits

At each time step $t = 1, 2, \dots, T$

- Environment determines a loss vector $\theta_{t,a} \in \mathbb{R}^d$ for each $a \in [K]$
- Environment draws the **context vector** $X_t \sim \mathcal{D}$
- Learner observes current context X_t and chooses action $A_t \in [K]$
- Learner incurs and observes $\ell_t(X_t, A_t)$

Goal is to minimize the expected regret against the optimal policy π^* :

$$R_T := \max_{\pi^* \in \Pi} \mathbb{E} \left[\sum_{t=1}^T \left(\ell_t(X_t, A_t) - \ell_t(X_t, \pi^*(X_t)) \right) \right],$$

where $\Pi=\{\pi:\mathcal{X}\to [K]\}$ is the set of all deterministic policies and $\mathcal{X}\subseteq \mathbb{R}^d$ is the context space

Adversarial and Stochastic Regimes

Adversarial Regime

 $\ell_t(X_t,a) := \langle X_t, \theta_{t,a} \rangle$, where $\theta_{t,a}$ for $a \in [K]$ is chosen by an adversary

Stochastic Regime

 $\ell_t(X_t, a) := \langle X_t, \theta_a \rangle + \varepsilon_t(X_t, a)$, where θ_a for $a \in [K]$ is fixed and unknown; $\varepsilon_t(X_t, a)$ is bounded zero-mean noise

Adversarial and Stochastic Regimes

Adversarial Regime

 $\ell_t(X_t,a) := \langle X_t, heta_{t,a}
angle$, where $heta_{t,a}$ for $a \in [K]$ is chosen by an adversary

Stochastic Regime

 $\ell_t(X_t,a) := \langle X_t, \theta_a \rangle + \varepsilon_t(X_t,a)$, where θ_a for $a \in [K]$ is fixed and unknown; $\varepsilon_t(X_t,a)$ is bounded zero-mean noise

(Corrupted Stochastic Regime)

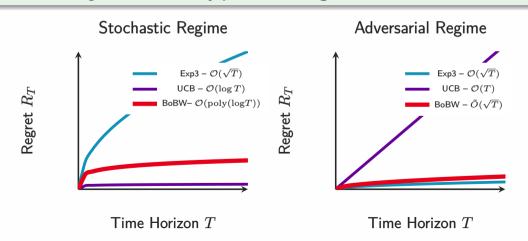
Intermediate regime between adversarial and stochastic one

 $\ell_t(X_t, a) := \langle X_t, \theta_{t,a} \rangle + \varepsilon_t(X_t, a)$, where $\theta_{t,a}$ satisfies $\sum_{t=1}^T \max_{a \in [K]} \|\theta_{t,a} - \theta_a\|_2 \le C$ for fixed and unknown $\theta_1, \ldots, \theta_K$ and unknown corruption level C > 0

Best-of-Both-Worlds Algorithms

Research Question

Can we establish an algorithm achieving optimal rates in both **stochastic** and **adversarial** regimes **without any prior knowledge of the environment**?



First BoBW Results for Linear Contextual Bandits

Main Contributions (Informal)

	Stochastic	Adversarial	
Worst-case	$\mathcal{O}\left(dK\mathrm{poly}\log(T)\right)$	$\tilde{\mathcal{O}}\left(\sqrt{dK} rac{oldsymbol{T}}{oldsymbol{T}} ight)$	
Data-dependent	$\mathcal{O}\left((dK)^2\mathrm{poly}\log(T)\right)$	$\tilde{\mathcal{O}}\left(dK\sqrt{\Lambda^*}\right)$	

 Λ^* : data-dependent quantity (cumulative second moment for the losses incurred by the algorithm)

Follow-the-Regularized-Leader (FTRL)

At each round t:

$$p_t(\cdot|X_t) := rg \min_{r \in \Delta([K])} \left\{ \sum_{s=1}^{t-1} \left\langle r, ilde{\ell}_s(X_t)
ight
angle + \psi_t(r)
ight\}$$

estimated cumulative losses up to previous rounds

$$ilde{\ell}_s(X_t) := (\langle X_t, ilde{ heta}_{s,1}
angle, \ldots, \langle X_t, ilde{ heta}_{s,K}
angle)$$
, $ilde{ heta}_{s,a}$ is the (biased) estimate for $heta_{s,a}$.

Shannon entropy regularizer: $\psi_t(r) = -\eta_t^{-1} \sum_{a \in [K]} r_a \ln r_a$

Loss Estimation

The estimator of $\theta_{t,a}$ is $\tilde{\theta}_{t,a} := \hat{\Sigma}_{t,a}^+ X_t \ell_t(X_t, A_t) \mathbb{1} [A_t = a]$

where $\hat{\Sigma}_{t,a}^+$ is the biased estimate of $\Sigma_{t,a}^{-1} := \mathbb{E}[\mathbb{1}[A_t = a]X_tX_t^\top \mid \mathcal{F}_{t-1}]^{-1}$

Entropy-dependent Learning Rate

Update Rule for Learning Rate (Informal)

$$\eta_{t+1}^{-1} \leftarrow \eta_t^{-1} + \frac{c}{\sqrt{1 + (\log K)^{-1} \sum_{s=1}^t H(p_s(\cdot|X_s))}}$$

so that we control adversarial regime: η_t^{-1} would become $\mathcal{O}(\sqrt{t})$ stochastic regime: η_{\star}^{-1} would become $\mathcal{O}(t)$

H: Shannon entropy

FTRL Analysis for i.i.d. Sample of Context $X_0 \sim \mathcal{D}$

(Expected regret for a fixed X_0)

$$\leq \mathbb{E}\left[\sum_{t=1}^T \left(\eta_{t+1}^{-1} - \eta_t^{-1}\right) H(p_{t+1}(\cdot|X_0))\right] + \mathbb{E}\left[\sum_{t=1}^T \eta_t \cdot \left(\text{variance of loss estimates}\right)\right]$$

(+prob. dependent constant)

Main Result

Theorem

FTRL with Shannon entropy achieves:

$$R_T^{
m adv} = \mathcal{O}\!\left(\sqrt{T\left(d + rac{\log T}{\lambda_{\min}(\mathbf{\Sigma})}
ight)K\log(K)\log(T)}
ight)$$
 for the adversarial regime

$$R_T^{\rm sto} = \mathcal{O}\!\left(\frac{K}{\Delta_{\min}}\left(d + \frac{\log T}{\lambda_{\min}(\boldsymbol{\Sigma})}\right)\log(KT)\log T\right) \text{ for the stochastic regime}$$

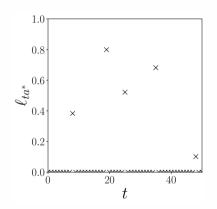
$$R_T^{\rm cor} = \mathcal{O}\left(R_T^{\rm sto} + \sqrt{CR_T^{\rm sto}}\right) \text{ for the corrupted stochastic regime}$$

 Δ_{\min} : minimum suboptimality gap over the context space

$$\lambda_{\min}(\Sigma) := \min \max \text{ eigenvalue of } \mathbb{E}[XX^{\top}]$$
 $C: \text{ corruption level}$

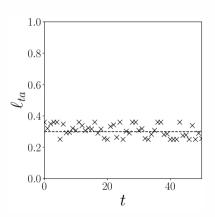
Our bound recovers the best-known result in the adversarial regime of Neu and Olkhovskaya (2020) and Zierahn et al. (2023) up to log-factors

Benefits of Data-dependent Regret Bounds



$$L^* := \mathbb{E}\left[\sum_{t=1}^T \ell_t(X_t, \pi^*(X_t))\right] \ (\leq T)$$

Cumulative loss of the optimal policy



$$\begin{split} \bar{\Lambda} := \mathbb{E}\big[\Sigma_{t=1}^T (\ell_t(X_t, A_t) - \langle X_t, \bar{\theta} \rangle)^2\big] \; (\leq T) \\ \text{with average vector } \bar{\theta} \\ \text{Cumulative variance of a policy} \end{split}$$

Overview

Additional Assumptions

- ullet The learner has access to $\Sigma_{t,a}^{-1}$ to get unbiased estimators.
- \bullet \mathcal{D} is a log-concave distribution to make the unbiased estimators stable.

Techniques

Optimistic FTRL

Continuous Exponential Weights

Black-Box Reduction
Dann, Wei, and Zimmert (2023)

Data-dependent BoBW

Main Results on Deta-Dependent BoBW

Theorem

	Stochastic	Adversarial	\sqrt{C}
Main Theorem	$\mathcal{O}\left(rac{(dK)^2\mathrm{poly}\log(dKT)}{\Delta_{\min}} ight)$	$ ilde{\mathcal{O}}\left(dK\sqrt{\Lambda^*} ight)$	✓
Corollary	$\mathcal{O}\left(rac{(dK)^2\mathrm{poly}\log(dKT)}{\Delta_{\min}} ight)$	$ ilde{\mathcal{O}}\left(dK\sqrt{\min\{oldsymbol{L}^*,ar{f\Lambda}\}} ight)$	✓

 Λ^* : cumulative variance of a policy w.r.t. a predictable loss sequence $m_{t,a}$ for $a \in [K]$

L*: cumulative loss of the best policy

 $\bar{\Lambda}$: cumulative second moment for the losses incurred by the algorithm

- Our result has extra \sqrt{d} in the adversarial regime (Olkhovskaya et al. (2023)).
- ullet For a choice of $m_{t,a}$, we use the online optimization method as in Ito et al. (2020).
- This allows a single algorithm to achieve first/second-order bounds simultaneously.

Summary

First BoBW Bounds for Linear Contextual Bandits

	Stochastic	Adversarial	\sqrt{C}
Worst-case	$\mathcal{O}\left(rac{dK ext{poly}\log(dKT)}{\Delta_{\min}} ight)$	$\mathcal{O}\left(\sqrt{TK(d+\log T)\log(T)\log(K)}\right)$	✓
Data-dependent	$\mathcal{O}\left(rac{(dK)^2\mathrm{poly}\log(dKT)}{\Delta_{\min}} ight)$	$ ilde{\mathcal{O}}\left(dK\sqrt{\Lambda^*} ight)$	✓
First/second order	$\mathcal{O}\left(\frac{(dK)^2\mathrm{poly}\log(dKT)}{\Delta_{\min}}\right)$	$ ilde{\mathcal{O}}\left(dK\sqrt{\min\{oldsymbol{L^*},ar{oldsymbol{\Lambda}}\}} ight)$	1

L*: cumulative loss of the best action

 $\Lambda^*(\bar{\Lambda})$: cumulative second moment for the losses incurred by the algorithm

Summary

First BoBW Bounds for Linear Contextual Bandits

	Stochastic	Adversarial	\sqrt{C}
Worst-case	$\mathcal{O}\left(rac{dK ext{poly}\log(dKT)}{\Delta_{\min}} ight)$	$\mathcal{O}\left(\sqrt{TK(d+\log T)\log(T)\log(K)}\right)$	✓
Data-dependent	$\mathcal{O}\left(rac{(dK)^2\mathrm{poly}\log(dKT)}{\Delta_{\min}} ight)$	$ ilde{\mathcal{O}}\left(dK\sqrt{\Lambda^*} ight)$	✓
First/second order	$\mathcal{O}\left(rac{(dK)^2\mathrm{poly}\log(dKT)}{\Delta_{\min}} ight)$	$ ilde{\mathcal{O}}\left(dK\sqrt{\min\{oldsymbol{L^*},ar{f\Lambda}\}} ight)$	1

L*: cumulative loss of the best action

 $\Lambda^*(\bar{\Lambda})$: cumulative second moment for the losses incurred by the algorithm

Thank you!

Appendix

Loss Estimation

Loss Estimation

The estimator of $\theta_{t,a}$ is $\tilde{\theta}_{t,a} := \hat{\Sigma}_{t,a}^+ X_t \ell_t(X_t, A_t) \mathbb{1}[A_t = a], \quad \forall a \in [K],$

where $\hat{\Sigma}_{t,a}^+$ is the biased estimate of $\Sigma_{t,a}^{-1} := \mathbb{E}_t[\mathbb{1}\left[A_t = a\right]X_tX_t^\top\right]^{-1}$.

Estimate $\Sigma_{t,a}^{-1}$

Use **simulator to generate i.i.d. contexts** from distribution \mathcal{D} (Matrix Geometric Resampling with Adaptive Iteration Numer M_t)

Unique Challenges

- We need to deal with a biased estimate of the loss vector
- We require redesigning adaptive learning rates, exploration rates, and iteration numbers of MGR. $(\gamma_t = \alpha_t \cdot \eta_t, M_t = \left\lceil \frac{4K}{\gamma_t \lambda_{\min}(\Sigma)} \log(t) \right\rceil$ and $\alpha_t = \frac{4K \log(t)}{\lambda_{\min}(\Sigma)}$).

Continuous MWU Method

OFTRL: learner has access to a loss predictor $m_{t,a} \in \mathbb{R}^d$ for each action a at round t.

MWU

The learner computes the density $p_t(\cdot|X_t)$ supported on $\Delta([K])$ and based on the continuous exponential weights $w_t(\cdot|X_t)$:

$$w_t(r|X_t) := \exp\left(-\eta_t \left(\sum_{s=1}^{t-1} \langle r, \widehat{\ell}_s(X_t) \rangle + \langle r, m_t(X_t) \rangle\right)\right),$$
 $p_t(r|X_t) := \frac{w_t(r|X_t)}{\int_{\Delta(K_t)} w_t(y|X_t) \ dy}, \quad \forall r \in \Delta([K]).$

Conputational Time

The continuous exponential weights incur a high (yet polynomial) sampling cost, resulting in $\mathcal{O}\left((K^5 + \log T)g_{\Sigma_t}\right)$ per round running time, where g_{Σ_t} is the time to construct the covariance matrix for each round

Data-Dependent Importance Weighting Stability

Data-Dependent Importance Weighting Stability

Given an adaptive sequence of weights $q_1,q_2,\ldots\in(0,1]$, the learner observes the feedback in round t with probability q_t . Let upd_t be 1 if observation occurs and 0 otherwise. Then, for any $\tau\in[T]$ and $a^*\in[K]$,

$$R_{ au}(a^*)=\mathbb{E}\left[\Sigma_{t=1}^ au\ell_t(X_t,A_t)-\ell_t(X_t,a^*)
ight]$$
 is bounded by

$$\mathcal{O}\left(\sqrt{\kappa_1(d,K,T)}\left(\sqrt{\mathbb{E}\left[\Sigma_{t=1}^{\tau}\frac{\mathsf{upd}_t\cdot(\ell_t(X_t,A_t)-\langle X_t,m_{t,A_t}\rangle)^2}{q_t^2}\right]}+\mathbb{E}\left[\frac{\sqrt{50dK}}{\min_{j\leq\tau}q_j}\right]\right)\right).$$