Best-of-Both-Worlds Algorithms for Linear Contextual Bandits

Yuko Kuroki Alberto Rumi Taira Tsuchiya Fabio Vitale Nicolò Cesa-Bianchi

AISTATS 2024

Multi-Armed Bandits

- *K*-arms (actions)
- Environment determines the losses to arms $\ell_t = (\ell_t(1), \ell_t(2), \dots, \ell_t(K)) \in \mathbb{R}^K$ at each time step $t = 1, 2, \dots, T$ hidden to the learner

At each time step $t = 1, 2, \ldots, T$

- Learner selects an action $A_t \in [K]$ and incurs a loss $\ell_t(A_t)$
- Learner observes a feedback: Only the loss for chosen arm $\ell_t(A_t)$ is revealed

Multi-Armed Bandits

- *K*-arms (actions)
- Environment determines the losses to arms $\ell_t = (\ell_t(1), \ell_t(2), \dots, \ell_t(K)) \in \mathbb{R}^K$ at each time step $t = 1, 2, \dots, T$ hidden to the learner

At each time step $t = 1, 2, \ldots, T$

- Learner selects an action $A_t \in [K]$ and incurs a loss $\ell_t(A_t)$
- Learner observes a feedback: Only the loss for chosen arm $\ell_t(A_t)$ is revealed

Goal is to minimize the expected regret against the best action in hindsight

$$R_{T} := \mathbb{E}\left[\sum_{t=1}^{T} \ell_{t}\left(A_{t}\right) - \sum_{t=1}^{T} \ell_{t}\left(a^{*}\right)\right], \quad a^{*} := \operatorname*{arg\,min}_{a \in [K]} \mathbb{E}\left[\sum_{t=1}^{T} \ell_{t}\left(a\right)\right]$$

cumulative losses of the learner cumulative losess of the best action

Contextual Information in Real Worlds

We often have access to **contextual information** in various domains such as online advertising, medical diagnosis, and finance.

Example: Recommendation Systems

- Context: User's profile or past purchase history
- Goal: Providing personalized product

Linear Contextual Bandits

At each time step $t = 1, 2, \ldots, T$

- For each $a \in [K]$, the environment determines a loss vector $\theta_{t,a} \in \mathbb{R}^d$
- Environment draws the **context vector** $X_t \sim \mathcal{D}$
- Learner observes current context X_t and chooses action $A_t \in [K]$
- Incurs and observes $\ell_t(X_t, A_t)$

Linear Contextual Bandits

At each time step $t = 1, 2, \ldots, T$

• For each $a \in [K]$, the environment determines a loss vector $\theta_{t,a} \in \mathbb{R}^d$

- Environment draws the **context vector** $X_t \sim \mathcal{D}$
- Learner observes current context X_t and chooses action $A_t \in [K]$
- Incurs and observes $\ell_t(X_t, A_t)$

Goal is to minimize the expected regret against the optimal policy π^* :

$$R_T := \max_{\pi^* \in \Pi} \mathbb{E}\left[\sum_{t=1}^T \left(\ell_t(X_t, A_t) - \ell_t(X_t, \pi^*(X_t))\right)\right],$$

where $\Pi = \{\pi : \mathcal{X} \to [K]\}$ is a set of all deterministic policies and $\mathcal{X} \subseteq \mathbb{R}^d$ is the context space

Adversarial and Stochastic Regimes

Adversarial Regime

 $\ell_t(X_t, a) := \langle X_t, \theta_{t,a} \rangle$, where $\theta_{t,a}$ for $a \in [K]$ is chosen by an adversary

Stochastic Regime

 $\ell_t(X_t, a) := \langle X_t, \theta_a \rangle + \varepsilon_t(X_t, a)$, where θ_a for $a \in [K]$ is fixed and unknown; $\varepsilon_t(X_t, a)$ is bounded zero-mean noise

Adversarial and Stochastic Regimes

Adversarial Regime

 $\ell_t(X_t, a) := \langle X_t, \theta_{t,a} \rangle$, where $\theta_{t,a}$ for $a \in [K]$ is chosen by an adversary

Stochastic Regime

 $\ell_t(X_t, a) := \langle X_t, \theta_a \rangle + \varepsilon_t(X_t, a)$, where θ_a for $a \in [K]$ is fixed and unknown; $\varepsilon_t(X_t, a)$ is bounded zero-mean noise

(Corrupted Stochastic Regime)

Intermediate regime between adversarial and stochastic one

 $\ell_t(X_t, a) := \langle X_t, \theta_{t,a} \rangle + \varepsilon_t(X_t, a)$, where $\theta_{t,a}$ satisfies $\sum_{t=1}^T \max_{a \in [K]} \|\theta_{t,a} - \theta_a\|_2 \le C$ for fixed and unknown $\theta_1, \ldots, \theta_K$ and unknown corruption level C > 0

Best-of-Both-Worlds Algorithms

Research Question

Can we establish an algorithm achieving optimal rates in both **stochastic** and **adversarial** regimes **without any prior knowledge of the environment**?

First BoBW Results for Linear Contextual Bandits

Main Contributions (Informal)

	Stochastic	Adversarial
Worst-case	$\mathcal{O}\left(dK\mathrm{poly}\log(T) ight)$	$\tilde{\mathcal{O}}\left(\sqrt{dK \ T}\right)$
Data-dependent	$\mathcal{O}\left((dK)^2\mathrm{poly}\log(T)\right)$	$\tilde{\mathcal{O}}\left(dK\sqrt{\Lambda^*}\right)$

 Λ^* : notion of data-dependent quantity (cumulative second moment for the losses incurred by the algorithm)

Follow-the-Regularized-Leader (FTRL)

At each round t:

$$p_t(\cdot|X_t) := rgmin_{r\in\Delta([K])} \left\{ \sum_{s=1}^{t-1} \langle r, ilde{\ell}_s(X_t)
angle + \psi_t(r)
ight\}$$

estimated cumulative losses up to previous rounds

$$ilde{\ell}_s(X_t):=(\langle X_t, ilde{ heta}_{s,1}
angle,\ldots,\langle X_t, ilde{ heta}_{s,K}
angle)$$
, $ilde{ heta}_{s,a}$ is the (biased) estimate for $heta_{s,a}$

Shannon entropy regularizer: $\psi_t(r) = -\eta_t^{-1} \sum_{a \in [K]} r_a \ln r_a$

Loss Estimation

The estimator of
$$heta_{t,a}$$
 is $ilde{ heta}_{t,a} := \hat{\Sigma}^+_{t,a} X_t \ell_t(X_t, A_t) \mathbb{1} \left[A_t = a\right]$

where $\hat{\Sigma}_{t,a}^+$ is the biased estimate of $\Sigma_{t,a}^{-1} := \mathbb{E}[\mathbbm{1} [A_t = a] X_t X_t^\top \mid \mathcal{F}_{t-1}]^{-1}$

Entropy-dependent Learning Rate

Update Rule for Learning Rate (Informal)

$$\eta_{t+1}^{-1} \leftarrow \eta_t^{-1} + \frac{c}{\sqrt{1 + (\log K)^{-1} \sum_{s=1}^t H(p_s(\cdot|X_s))}}$$

so that we control adversarial regime: η_t^{-1} would become $\mathcal{O}(\sqrt{t})$ stochastic regime: η_t^{-1} would become $\mathcal{O}(t)$

H: Shannon entropy

FTRL Analysis for i.i.d. Sample of Context $X_0 \sim \mathcal{D}$

(Expected regret for a fixed X_0)

$$\leq \mathbb{E}\left[\sum_{t=1}^{T} \left(\eta_{t+1}^{-1} - \eta_{t}^{-1}\right) H(p_{t+1}(\cdot|X_{0}))\right] + \mathbb{E}\left[\sum_{t=1}^{T} \eta_{t} \cdot \left(\text{variance of loss estimates}\right)\right]$$

(+prob. dependent constant)

Main Result

Theorem

FTRL with Shannon entropy achieves:

$$\begin{split} R_T^{\text{adv}} &= \mathcal{O}\left(\sqrt{T\left(d + \frac{\log T}{\lambda_{\min}(\Sigma)}\right) K \log(K) \log(T)}\right) \text{ for the adversarial regime} \\ R_T^{\text{sto}} &= \mathcal{O}\left(\frac{K}{\Delta_{\min}} \left(d + \frac{\log T}{\lambda_{\min}(\Sigma)}\right) \log(KT) \log T\right) \text{ for the stochastic regime} \\ R_T^{\text{cor}} &= \mathcal{O}\left(R_T^{\text{sto}} + \sqrt{CR_T^{\text{sto}}}\right) \text{ for the corrupted stochastic regime} \end{split}$$

 Δ_{\min} : minimum suboptimality gap over the context space $\lambda_{\min}(\Sigma) :=$ minimum eigenvalue of $\mathbb{E}[XX^{\top}]$ C: corruption level

Our bound recovers the best-known result in the adversarial regime of Neu and Olkhovskaya (2020) and Zierahn et al. (2023) up to log-factors

Benefits of Data-dependent Regret Bounds

 $L^* := \mathbb{E}\left[\Sigma_{t=1}^T \ell_t(X_t, \pi^*(X_t))\right] \ (\leq T)$

Cumulative loss of the optimal policy

 $\bar{\Lambda} := \mathbb{E} \left[\Sigma_{t=1}^T (\ell_t(X_t, A_t) - \langle X_t, \bar{\theta} \rangle)^2 \right] (\leq T)$ with average vector $\bar{\theta}$ Cumulative variance of a policy

Overview

Additional Assumptions

- The learner has access to $\Sigma_{t,a}^{-1}$ to get unbiased estimators.
- $\bullet \ \mathcal{D}$ is a log-concave distribution to make the unbiased estimators stable.

Techniques

Optimistic FTRL Continuous Exponential Weights

Black-Box Reduction Dann, Wei, and Zimmert (2023)

Data-dependent BoBW

Main Results on Deta-Dependent BoBW

Theorem

 Λ^* : cumulative variance of a policy w.r.t. a predictable loss sequence $m_{t,a}$ for $a \in [K]$ L^* : cumulative loss of the best policy

 Λ : cumulative second moment for the losses incurred by the algorithm

- Our result has extra \sqrt{d} in the adversarial regime (Olkhovskaya et al. (2023)).
- For a choice of $m_{t,a}$, we use the online optimization method as in Ito et al. (2020).
- This allows a single algorithm to achieve first/second-order bounds simultaneously.

First BoBW Bounds for Linear Contextual Bandits

	Stochastic	Adversarial	\sqrt{C}
Worst-case	$\mathcal{O}\left(rac{dK ext{poly}\log(dKT)}{\Delta_{\min}} ight)$	$\mathcal{O}\left(\sqrt{\mathbf{T}K\left(d + \log T\right)\log(T)\log(K)}\right)$	1
Data-dependent	$\mathcal{O}\left(rac{(dK)^2\mathrm{poly}\log(dKT)}{\Delta_{\min}} ight)$	$\tilde{\mathcal{O}}\left(dK\sqrt{\Lambda^*}\right)$	\checkmark
First/second order	$\mathcal{O}\left(\frac{(dK)^2 \mathrm{poly}\log(dKT)}{\Delta_{\min}}\right)$	$ ilde{\mathcal{O}}\left(dK\sqrt{\min\{\boldsymbol{L^*},ar{\Lambda}\}} ight)$	~

 $L^*:$ cumulative loss of the best action $\Lambda^*(\bar\Lambda):$ cumulative second moment for the losses incurred by the algorithm

First BoBW Bounds for Linear Contextual Bandits

	Stochastic	Adversarial	\sqrt{C}
Worst-case	$\mathcal{O}\left(rac{dK ext{poly}\log(dKT)}{\Delta_{\min}} ight)$	$\mathcal{O}\left(\sqrt{TK(d + \log T)\log(T)\log(K)}\right)$	1
Data-dependent	$\mathcal{O}\left(rac{(dK)^2\mathrm{poly}\log(dKT)}{\Delta_{\min}} ight)$	$\tilde{\mathcal{O}}\left(dK\sqrt{\Lambda^*}\right)$	\checkmark
First/second order	$\mathcal{O}\left(\frac{(dK)^2 \mathrm{poly}\log(dKT)}{\Delta_{\min}}\right)$	$ ilde{\mathcal{O}}\left(dK\sqrt{\min\{\boldsymbol{L^*},ar{\Lambda}\}} ight)$	1

 $L^*:$ cumulative loss of the best action $\Lambda^*(\bar{\Lambda}):$ cumulative second moment for the losses incurred by the algorithm

Thank you!

Appendix

Loss Estimation

Loss Estimation

The estimator of
$$heta_{t,a}$$
 is $ilde{ heta}_{t,a} := \hat{\Sigma}^+_{t,a} X_t \ell_t(X_t, A_t) \mathbbm{1} \left[A_t = a\right], \quad \forall a \in [K],$

where $\hat{\Sigma}_{t,a}^+$ is the biased estimate of $\Sigma_{t,a}^{-1} := \mathbb{E}_t [\mathbbm{1} [A_t = a] X_t X_t^{\top}]^{-1}$.

Estimate $\Sigma_{t,a}^{-1}$

Use **simulator to generate i.i.d. contexts** from distribution \mathcal{D} (Matrix Geometric Resampling with Adaptive Iteration Numer M_t)

Unique Challenges

- We need to deal with a biased estimate of the loss vector
- We require redesigning adaptive learning rates, exploration rates, and iteration numbers of MGR. ($\gamma_t = \alpha_t \cdot \eta_t$, $M_t = \left\lceil \frac{4K}{\gamma_t \lambda_{\min}(\Sigma)} \log(t) \right\rceil$ and $\alpha_t = \frac{4K \log(t)}{\lambda_{\min}(\Sigma)}$).

Continuous MWU Method

OFTRL: learner has access to a loss predictor $m_{t,a} \in \mathbb{R}^d$ for each action a at round t.

MWU

The learner computes the density $p_t(\cdot|X_t)$ supported on $\Delta([K])$ and based on the continuous exponential weights $w_t(\cdot|X_t)$:

$$w_t(r|X_t) := \exp\left(-\eta_t\left(\sum_{s=1}^{t-1} \langle r, \widehat{\ell}_s(X_t) \rangle + \langle r, m_t(X_t) \rangle\right)\right)$$
$$p_t(r|X_t) := \frac{w_t(r|X_t)}{\int_{\Delta([K])} w_t(y|X_t) \ dy}, \quad \forall r \in \Delta([K]).$$

Conputational Time

The continuous exponential weights incur a high (yet polynomial) sampling cost, resulting in $\mathcal{O}((K^5 + \log T)g_{\Sigma_t})$ per round running time, where g_{Σ_t} is the time to construct the covariance matrix for each round

Data-Dependent Importance Weighting Stability

Data-Dependent Importance Weighting Stability

Given an adaptive sequence of weights $q_1, q_2, \ldots \in (0, 1]$, the learner observes the feedback in round t with probability q_t . Let upd_t be 1 if observation occurs and 0 otherwise. Then, for any $\tau \in [T]$ and $a^* \in [K]$, $R_{\tau}(a^*) = \mathbb{E}\left[\Sigma_{t=1}^{\tau} \ell_t(X_t, A_t) - \ell_t(X_t, a^*)\right]$ is bounded by

$$\mathcal{O}\left(\sqrt{\kappa_1(d,K,T)}\left(\sqrt{\mathbb{E}\left[\Sigma_{t=1}^{\tau}\frac{\mathsf{upd}_t \cdot (\ell_t(X_t,A_t) - \langle X_t, m_{t,A_t} \rangle)^2}{q_t^2}\right]} + \mathbb{E}\left[\frac{\sqrt{50dK}}{\min_{j \leq \tau} q_j}\right]\right)\right).$$