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Multi-Armed Bandits

@ K-arms (actions)
e Environment determines the losses to arms £; = (£;(1),£:(2),...,4:(K)) € RX at
each time step t = 1,2,...,T hidden to the learner

At each time stept=1,2,...,T
@ Learner selects an action A; € [K] and incurs a loss ¢; (A;)
@ Learner observes a feedback: Only the loss for chosen arm ¢; (A;) is revealed
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Multi-Armed Bandits

@ K-arms (actions)
e Environment determines the losses to arms £; = (£;(1),£:(2),...,4:(K)) € RX at
each time step t = 1,2,...,T hidden to the learner

At each time stept=1,2,...,T
@ Learner selects an action A; € [K] and incurs a loss ¢; (A;)
@ Learner observes a feedback: Only the loss for chosen arm ¢; (A;) is revealed

Goal is to minimize the expected regret against the best action in hindsight

Rr:=E Zét (Ay) — Zét (a*)] , a":=argminE [Z 2 (a)]

cumulative losses of the learner cumulative losess of the best action
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Contextual Information in Real Worlds

We often have access to contextual information in various domains such as online
advertising, medical diagnosis, and finance.

Example: Recommendation Systems
@ Context: User's profile or past purchase history
@ Goal: Providing personalized product
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Linear Contextual Bandits

At each time stept=1,2,...,T
e For each a € [K], the environment determines a loss vector 6;, € R?
@ Environment draws the context vector X; ~ D

@ Learner observes current context X; and chooses action A; € [K]
@ Incurs and observes £;(X;, A;)
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Linear Contextual Bandits

At each time stept=1,2,...,T

e For each a € [K], the environment determines a loss vector 6;, € R?

@ Environment draws the context vector X; ~ D

@ Learner observes current context X; and chooses action A; € [K]
@ Incurs and observes £;(X;, A;)

Goal is to minimize the expected regret against the optimal policy 7*:

Ry i= maxE [i (e, A1) - et(xt,w*(xt)))] :

where IT = {7 : X — [K]} is a set of all deterministic policies
and X C R¢ is the context space
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Adversarial and Stochastic Regimes

Adversarial Regime
0:(Xy, a) := (X4, 01,), where 0; , for a € [K] is chosen by an adversary

Stochastic Regime
4i( Xy, a) == (X, 0,) + (X3, a), where 8, for a € [K] is fixed and unknown; / \
e1(X3,a) is bounded zero-mean noise
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Adversarial and Stochastic Regimes

Adversarial Regime
0:(Xy, a) := (X4, 01,), where 0; , for a € [K] is chosen by an adversary

Stochastic Regime
4i( Xy, a) == (X, 0,) + (X3, a), where 8, for a € [K] is fixed and unknown; / \
e1(X3,a) is bounded zero-mean noise

(Corrupted Stochastic Regime)
Intermediate regime between adversarial and stochastic one

(X, a) = (X, 0r4) + (X, a), where 6, , satisfies Zthl maxac(k] ||0ta — Oall2 < C
for fixed and unknown 6+, ..., 0k and unknown corruption level C' > 0
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Best-of-Both-Worlds Algorithms

Research Question

Can we establish an algorithm achieving optimal rates in both stochastic and
adversarial regimes without any prior knowledge of the environment?

Stochastic Regime Adversarial Regime

= 7/
— Exp3 — O(V/T) m—— Exp3 - O(VT)
— UCB - O(logT)

—— UCB-O(T)
s BoBW - O(V/T)

mmmm BoBW- O (poly(logT'))

Regret Rr
Regret R

Time Horizon T' Time Horizon T'
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First BoBW Results for Linear Contextual Bandits

Main Contributions (Informal)

Stochastic Adversarial
Worst-case O (dKpolylog(T)) O (VdK T
Data-dependent O ((dK)?polylog(T)) O (dK+v/A*

A*: notion of data-dependent quantity (cumulative second moment for the losses incurred by the algorithm)
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Follow-the-Regularized-Leader (FTRL)

At each round ¢:

p:(+|X}) := argmin {i (r, £4(X,)) + 1/)t(r)}

reA(K) | S5

estimated cumulative losses
up to previous rounds

Es(Xt) = (X, és,1>, ey (Xt és,K)), és,a is the (biased) estimate for 0 ,.

Shannon entropy regularizer: 1;(r) = —n, ' ) K] TalnTa

a€|

-

Loss Estimation
The estimator of Ot,a is ét,a = ﬁ::,_atht(Xt? At)]l [At = (,l]

where 33, is the biased estimate of 3} := E[1 [A; = a] X, X | Fi_1] ™}
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Entropy-dependent Learning Rate

Update Rule for Learning Rate (Informal)
c

\/1 + (log K)~150_ H(ps (-] X))

—1
Miy1 < !

so that we control
adversarial regime: n;! would become O(+/%)
stochastic regime: 7; * would become O(t) H: Shannon entropy

FTRL Analysis for i.i.d. Sample of Context X, ~ D |

(Expected regret for a fixed X))
T

<E D (i — ') Hpea(1X0))

t=1

T

Z n; - (variance of loss estimates)
t=1

+E

(4prob. dependent constant)
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Main Result

Theorem
FTRL with Shannon entropy achieves:

logT
R =0 <\/T (d 4 96 ) Klog(K) log(T)) for the adversarial regime

)\min(z)

Rte =0 <A£ (d + ;L(TE)) log(KT) log T) for the stochastic regime

RFF=0 (RZEO + \/CR%O) for the corrupted stochastic regime

Anmnin: minimum suboptimality gap over the context space
Amin () := minimum eigenvalue of E[XX "] C: corruption level

Our bound recovers the best-known result in the adversarial regime of Neu and
Olkhovskaya (2020) and Zierahn et al. (2023) up to log-factors

10/14



Benefits of Data-dependent Regret Bounds
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Overview

Additional Assumptions
@ The learner has access to X} ! to get unbiased estimators.
@ D is a log-concave distribution to make the unbiased estimators stable.

Techniques
Optimistic FTRL Black-Box Reduction Data-dependent
Continuous Exponential Weights Dann, Wei, and Zimmert (2023) BoBW
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Main Results on Deta-Dependent BoBW

Theorem
Stochastic Adversarial VC
Main Theorem O ({0 2qlesldtD) ) O (dK V")

v
Corollary O ({0 paleslatD) ) @(dK\/min{L*,j_\}) v

A*: cumulative variance of a policy w.r.t. a predictable loss sequence m;, for a € [K]
L*: cumulative loss of the best policy
A: cumulative second moment for the losses incurred by the algorithm

@ Our result has extra v/d in the adversarial regime (Olkhovskaya et al. (2023)).
@ For a choice of m;,, we use the online optimization method as in Ito et al. (2020).
@ This allows a single algorithm to achieve first/second-order bounds simultaneously.
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Summary

First BoBW Bounds for Linear Contextual Bandits

Stochastic Adversarial VC
Worst-case ] (%ﬂ‘fjdm) ] (\/ TK (d + log T) log(T') log(K )) v
Data-dependent (@) (W) ) (dK\//F) v
First/second order O (WW) o (dK\/min{L*, f\}) v

L*: cumulative loss of the best action

A*(A): cumulative second moment for the losses incurred by the algorithm
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Summary

First BoBW Bounds for Linear Contextual Bandits

Stochastic Adversarial VC
Worst-case ] (%ﬂ‘fjdm) ] (\/ TK (d + log T) log(T') log(K )) v
Data-dependent (@) (W) ) (dK\//F) v
First/second order O (WW) o (dK\/min{L*, f\}) v

L*: cumulative loss of the best action

A*(A): cumulative second moment for the losses incurred by the algorithm

Thank you!
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Loss Estimation
Loss Estimation
The estimator of Ot,a is ét,a = 22_ tht(Xta At)]l [At = a] 5 Va € [K],

,a

where 33 is the biased estimate of ;! := E,[1 [4; = a] X, X,']".

Estimate X,

Use simulator to generate i.i.d. contexts from distribution D
(Matrix Geometric Resampling with Adaptive Iteration Numer M)

Unique Challenges
@ We need to deal with a biased estimate of the loss vector

@ We require redesigning adaptive learning rates, exploration rates, and iteration
4K lo
numbers of MGR. (v; = oy - s, M; = [%/\i—f@) log(t)w and oy = /\minfg))).
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Continuous MWU Method

OFTRL: learner has access to a loss predictor m; , € R¢ for each action a at round t¢.

MWU

The learner computes the density p;(-|X;) supported on A([K]) and based on the
continuous exponential weights w;(-|X;):

wy (7| X:) := exp (—Ut (2(7“,29()(15» +(r, mt(Xt»)),

s=1

wy(r| Xy)

fA([K]) wy(y|Xy) dy’ Vr € A([K]).

pe(r|Xy) ==

Conputational Time

The continuous exponential weights incur a high (yet polynomial) sampling cost,
resulting in O((K5 + log T)ggt) per round running time, where gs, is the time to

construct the covariance matrix for each round
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Data-Dependent Importance Weighting Stability

Data-Dependent Importance Weighting Stability

Given an adaptive sequence of weights ¢, ¢a, ... € (0, 1], the learner observes the
feedback in round ¢ with probability ¢;. Let upd, be 1 if observation occurs and 0
otherwise. Then, for any 7 € [T] and a* € [K],

RT(G*) =E [Ezzlgt(Xty At) — Et(Xta a*)] is bounded by
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