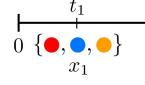


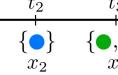
Probabilistic Modeling for Sequences of Sets in Continuous-Time

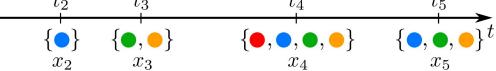
Yuxin Chang¹ Alex Boyd² Padhraic Smyth^{1,2}

¹Department of Computer Science ²Department of Statistics
University of California, Irvine

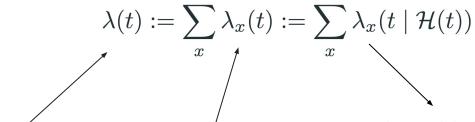
Event Data Over Continuous-Time


Previous work:




This work:

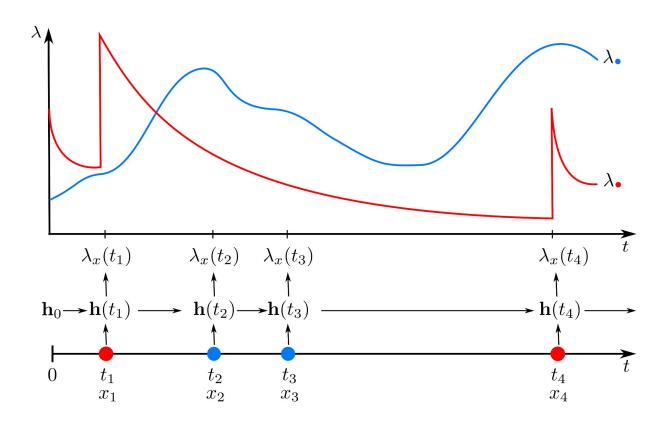
$$\mathcal{X} := \mathcal{P}(\{\bullet, \bullet, \bullet, \bullet\}) \quad 0 \quad \{\bullet, \bullet, \bullet\}$$



Marked Temporal Point Processes (MTPPs)

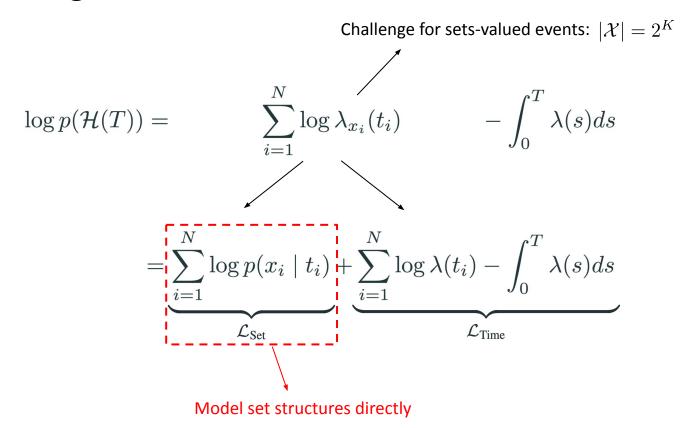
$$x \in \mathcal{X} := \{1, \dots, K\}$$

Total Intensity


Mark-specific Intensities

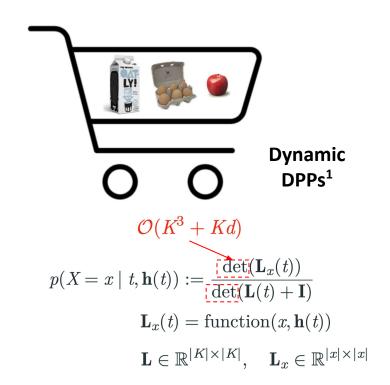
Can be modeled by...

- Parametric: e.g., Hawkes
- Neural: e.g., neural/transformer Hawkes

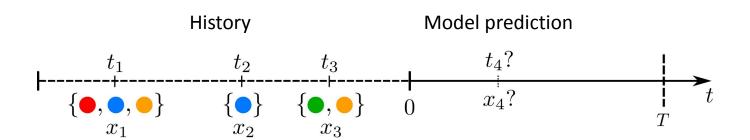


Recurrent MTPPs $\lambda_x(t) = f_x(\mathbf{h}(t))$

Sequence Log-likelihood



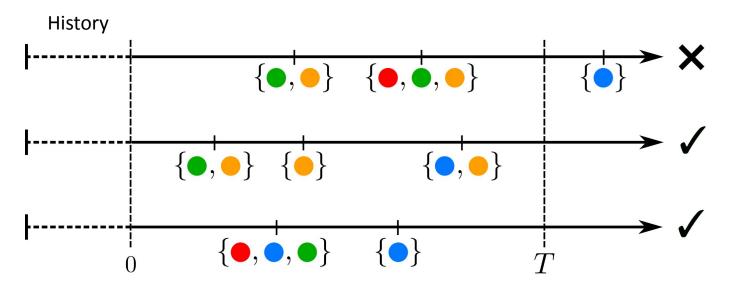
Modeling Set Structures



$$p(X = x \mid t, \mathbf{h}(t)) \sim \text{Bernoulli}(\boldsymbol{\theta}(t))$$

 $\theta_k(t) = \text{function}_k(\mathbf{h}(t)) \text{ for } k \in \{1, \dots, K\}$

Probabilistic Querying



Querying at *item-level* in the context of set-valued events:

Answering Queries: Naive Sampling (Daley and Vere-Jones, 2003)

Importance Sampling Estimators: Hitting Time Example

Boyd, Showalter, Mandt, Smyth. (NeurIPS 2022) Boyd, Chang, Mandt, Smyth. (AIStats 2023)

Define proposal distribution $q \sim \mu_x(t) = 1$ (no overlap in A and x) $\lambda_x(t)$:

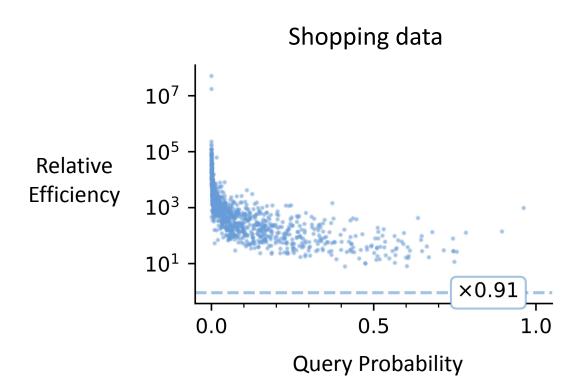
$$\begin{split} p(\operatorname{hit}(A) &\leq t) = 1 - p(\operatorname{hit}(A) > t) \\ &= 1 - \mathbb{E}_{\mathcal{H} \sim p} \left[\mathbb{1} \text{ (no item in } A \text{ occurs in } \mathcal{H}[0,t]) \right] \\ &= 1 - \mathbb{E}_{\mathcal{H} \sim q} \left[\mathbb{1} \text{ (no item in } A \text{ occurs in } \mathcal{H}[0,t]) \frac{p(\mathcal{H}[0,t])}{q(\mathcal{H}[0,t])} \right] \\ &= 1 - \mathbb{E}_{\mathcal{H} \sim q} \left[\frac{p(\mathcal{H}[0,t])}{q(\mathcal{H}[0,t])} \right] \\ &= \dots \\ &= 1 - \mathbb{E}_{\mathcal{H} \sim q} \left[\exp\left(- \int_0^t \lambda(s) \hat{p}_A(s) ds \right) \right] \end{split}$$

Can be extended to general Boolean expressions, see paper for more details.

Experiments

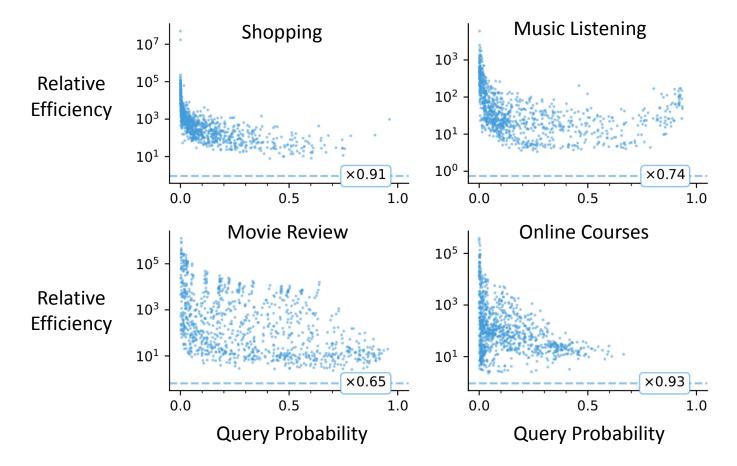
Dataset	# Sequences	# Items	T_{max}	Avg. Length
Shopping	174,615	21	366	17
Music Listening	10,705	15	744	207
Movie Review	11,198	20	8,781	65
Online Courses	6,892	97	715	52

- Three main sets of experiments:
 - Querying efficiency
 - Test log-likelihood comparison (in paper)
 - Query-based model selection (in paper)

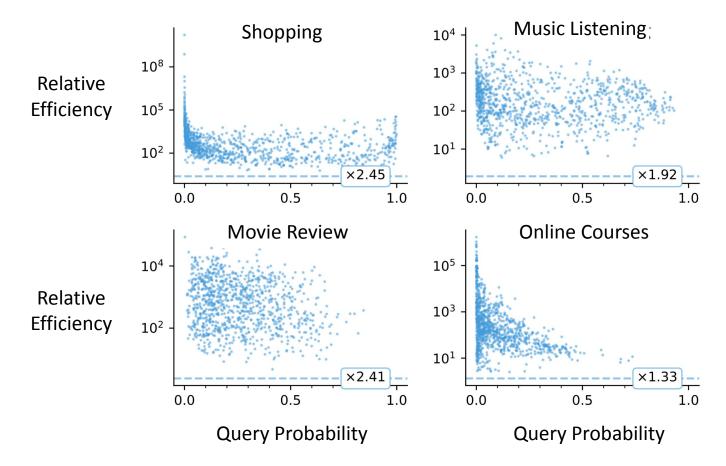

Evaluating Importance Estimators (Van der Vaart, 2000)

Relative Efficiency :=
$$\frac{\operatorname{Var}_p\left[\hat{\pi}_{\operatorname{Naive}}(\mathcal{H}(T))\right]}{\operatorname{Var}_q\left[\hat{\pi}_{\operatorname{Imp.}}(\mathcal{H}(T))\right]}$$

Intuition: # times fewer importance samples to achieve the same estimator variance.



Relative Efficiency of Hitting Time Queries



Statistical Efficiency of Hitting Time Queries

Statistical Efficiency of "A-before-B" Queries

Contributions

- 1. New probabilistic models for set-valued data in continuous-time.
- 2. New querying methods to answer <u>item-level</u> queries for set-valued events.
- Demonstrated significant improvements on modeling and <u>orders-of-magnitude</u> improvements on querying efficiency over alternative methods.

Poster @Today, Room 1 #53

Email: yuxinc20@uci.edu

Our paper:

