Mechanics of Next Token Prediction with Self-Attention
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Question

What relationships in the training data are captured by the single-

layer self-attention model?

Motivation

Exploring implicit bias is a key step in unraveling the generalization
of the (softmax-)attention mechanism.

Optimization Methods

e Gradient descent: Given starting point W(0) and step size 7,

W(r+1)=W(r) —nVLW(T)). (Algo-GD)
e Regularization path: Given radius R > 0, W € R%*¢,

Wr =arg min L(W). (Algo-RP)
IWilp<R

Theorem (informal)

The combined attention weights W := W[(Wér evolve as

Wap = C - Wiaa + W,

where C' - Wy.q 1s the hard retrieval component and Wy is
the soft composition component.
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Problem Formulation

( Next-token prediction )

fW(X) — XTS(walast>
- S(+): softmax function; W := WKWCT): attention weights.

Problem description: Given embedding matrix E =
e1---er]' € RE*? and input X € RI*? where x; € E,
the next-token prediction is to predict the next token y € [K]|.
Then given training dataset { i) yz)} , linear prediction head
ci, k € |[K| and loss ¢, we consider ERI\/I problem:
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Token-Priority Graph (TPG)
Suppose (X,y) has query/last token k. For all (x,y) pairs in
(X, y) where x is the token ID of x, add a directed edge (y — x)

to graph GF)

o (i = j)e g

* (i< j) € G"

Attention SVM
W= = arg Lt Wl

¥) but (j — 1) is not.
. both nodes 7, j are in the same SCC of G\¥

): (i = j) is present in G!

(Graph-SVM)

Main Results

Definition:
Define cyclic subspace Sy, as the span of all matrices
(e; —e;)e] forall (i < j) € G¥ and k € [K].

Assumptions:
® For Vy,k € |[K|, k # v, cyTey = 1 and cyTek = (; and

® For any (X, y), token e, is contained in the input sequence X.

Simulation Results:
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(a) shows the directional convergence of W(7);

(b) presents the convergence of IIs. (W(7)).

Theorem I: Convergence of Gradient Descent

Suppose Assumptions @&@ hold and £(u) = —log(u). Let

Wome S be the solution of (Graph—SVM) and suppose
W 2 (. Starting from any W(0) with constant step size n,
the algorithm Algo-GD satisfies lim,_, ||W(7T)||r = 00

)

W(T) WSVHI . ;
lim — and lim Ils, (W(7)) = W™,
oo [W(T)|[p o [W=[ Teo

Here W™ is the unique finite minima of the loss LN',(W) =
limp oo LW + R - W) over Sgy,.

Theorem II: Convergence of Regularized Path

Suppose Assumptions @&@ hold and loss £ : R — R is
strictly decreasing and |¢'| is bounded. Let W5 S:- be the

solution of (Graph—SVM) and suppose W™ # (. Then the
solution of regularization path Algo-RP obeys

W WSVHl
lim —t — and

Here W = arg Minwes, Mg o0 LW + R - W),

lim Mg (Wg) € W

R—o0




