Mechanics of Next Token Prediction with Self-Attention

Yingcong $Li^{1,\dagger}$ Yixiao Huang^{1,\dagger} M. Emrullah Ildiz¹ Ankit Singh Rawat² Samet Oymak¹ University of Michigan, Ann Arbor¹ Google Research NYC² Equal contribution[†]

Motivation

Question

What relationships in the training data are captured by the single-layer self-attention model?

Motivation

Exploring implicit bias is a key step in unraveling the generalization of the (softmax-)attention mechanism.

Optimization Methods

- Gradient descent: Given starting point W(0) and step size η , $W(\tau+1)=W(\tau)-\eta\nabla\mathcal{L}(W(\tau)).$ (Algo-GD)
- Regularization path: Given radius R>0, $\pmb{W}\in\mathbb{R}^{d\times d}$,

$$\bar{\mathbf{W}}_R = \arg\min_{\|\mathbf{W}\|_E \le R} \mathcal{L}(\mathbf{W}).$$
 (Algo-RP)

Theorem (informal)

The combined attention weights $\boldsymbol{W} := \boldsymbol{W}_K \boldsymbol{W}_Q^{\top}$ evolve as

$$W_{\mathrm{GD}} \approx C \cdot W_{\mathrm{hard}} + W_{\mathrm{soft}}$$

where $C \cdot W_{\text{hard}}$ is the hard retrieval component and W_{soft} is the soft composition component.

Problem Formulation

Next-token prediction

$$f_{\mathbf{W}}(\mathbf{X}) = \mathbf{X}^{\top} \mathbb{S}(\mathbf{X} \mathbf{W} \mathbf{x}_{\mathsf{last}})$$

- $\mathbb{S}(\cdot)$: softmax function; $m{W} := m{W}_K m{W}_O^{ op}$: attention weights.

Problem description: Given embedding matrix $\boldsymbol{E} = [\boldsymbol{e}_1 \cdots \boldsymbol{e}_K]^\top \in \mathbb{R}^{K \times d}$ and input $\boldsymbol{X} \in \mathbb{R}^{T \times d}$, where $\boldsymbol{x}_t \in \boldsymbol{E}$, the next-token prediction is to predict the next token $y \in [K]$. Then given training dataset $\{(\boldsymbol{X}_i, y_i)\}_{i=1}^n$, linear prediction head $\boldsymbol{c}_k, k \in [K]$ and loss ℓ , we consider ERM problem:

$$\mathcal{L}(oldsymbol{W}) = rac{1}{n} \sum_{i=1}^n \ell(oldsymbol{c}_{y_i}^ op oldsymbol{X}_i^ op \mathbb{S}(oldsymbol{X}_i oldsymbol{W} oldsymbol{x}_{i,\mathsf{last}})).$$

Token-Priority Graph (TPG)

Suppose (\boldsymbol{X},y) has query/last token k. For all (x,y) pairs in (\boldsymbol{X},y) where x is the token ID of \boldsymbol{x} , add a directed edge $(y\to x)$ to graph $\mathcal{G}^{(k)}$.

- $(i \Rightarrow j) \in \mathcal{G}^{(k)}$: $(i \to j)$ is present in $\mathcal{G}^{(k)}$ but $(j \to i)$ is not.
- $(i \asymp j) \in \mathcal{G}^{(k)}$: both nodes i, j are in the same SCC of $\mathcal{G}^{(k)}$.

Attention SVM

$$egin{aligned} oldsymbol{W}^{\mathsf{svm}} &= rg \min_{oldsymbol{W}} \|oldsymbol{W}\|_F & \left(\mathsf{Graph\text{-}SVM}
ight) \ & \mathsf{s.t.} \quad (oldsymbol{e}_i - oldsymbol{e}_j)^{\top} oldsymbol{W} oldsymbol{e}_k egin{aligned} &= 0 & orall (i symbol{x} j) \in \mathcal{G}^{(k)} \ &\geq 1 & orall (i \Rightarrow j) \in \mathcal{G}^{(k)} \end{aligned}$$

Main Results

Definition:

Define cyclic subspace S_{fin} as the span of all matrices $(\boldsymbol{e}_i - \boldsymbol{e}_j)\boldsymbol{e}_k^{\top}$ for all $(i \asymp j) \in \mathcal{G}^{(k)}$ and $k \in [K]$.

Assumptions:

- ① For $\forall y, k \in [K]$, $k \neq y$, $\boldsymbol{c}_{y}^{\top} \boldsymbol{e}_{y} = 1$ and $\boldsymbol{c}_{y}^{\top} \boldsymbol{e}_{k} = 0$; and
- 2 For any (X, y), token e_y is contained in the input sequence X.

Simulation Results:

- (a) shows the directional convergence of ${m W}(au)$;
 - **(b)** presents the convergence of $\Pi_{\mathcal{S}_{\mathsf{fin}}}(W(\tau))$.

Theorem I: Convergence of Gradient Descent

Suppose Assumptions 1&2 hold and $\ell(u) = -\log(u)$. Let $\mathbf{W}^{\text{sym}} \in \mathcal{S}_{\text{fin}}^{\perp}$ be the solution of (Graph-SVM) and suppose $\mathbf{W}^{\text{sym}} \neq 0$. Starting from any $\mathbf{W}(0)$ with constant step size η , the algorithm Algo-GD satisfies $\lim_{\tau \to \infty} \|\mathbf{W}(\tau)\|_F = \infty$,

$$\lim_{\tau \to \infty} \frac{\boldsymbol{W}(\tau)}{\|\boldsymbol{W}(\tau)\|_{F}} = \frac{\boldsymbol{W}^{\text{svm}}}{\|\boldsymbol{W}^{\text{svm}}\|_{F}} \text{ and } \lim_{\tau \to \infty} \boldsymbol{\Pi}_{\mathcal{S}_{\text{fin}}}(\boldsymbol{W}(\tau)) = \boldsymbol{W}^{\text{fin}}.$$

Here \mathbf{W}^{fin} is the unique finite minima of the loss $\tilde{\mathcal{L}}(\mathbf{W}) := \lim_{R \to \infty} \mathcal{L}(\mathbf{W} + R \cdot \mathbf{W}^{\text{svm}})$ over \mathcal{S}_{fin} .

Theorem II: Convergence of Regularized Path

Suppose Assumptions 1&2 hold and loss $\ell : \mathbb{R} \to \mathbb{R}$ is strictly decreasing and $|\ell'|$ is bounded. Let $\mathbf{W}^{\text{sym}} \in \mathcal{S}_{\text{fin}}^{\perp}$ be the solution of (Graph-SVM) and suppose $\mathbf{W}^{\text{sym}} \neq 0$. Then the solution of regularization path Algo-RP obeys

$$\lim_{R\to\infty}\frac{\bar{\boldsymbol{W}}_R}{R} = \frac{\boldsymbol{W}^{\text{svm}}}{\|\boldsymbol{W}^{\text{svm}}\|_F} \text{ and } \lim_{R\to\infty}\boldsymbol{\Pi}_{\mathcal{S}_{\text{fin}}}(\bar{\boldsymbol{W}}_R) \in \mathcal{W}^{\text{fin}}.$$

Here $\mathcal{W}^{\text{fin}} = \arg\min_{\boldsymbol{W} \in \mathcal{S}_{\text{fin}}} \lim_{R \to \infty} \mathcal{L}(\boldsymbol{W} + R \cdot \boldsymbol{W}^{\text{svm}}).$