

Multi-Objective Optimization via Wasserstein-Fisher-Rao Gradient Flow

Yinuo Ren¹, Tesi Xiao², Tanmay Gangwani², Anshuka Rangi², Holakou Rahmanian², Lexing Ying^{1,3}, Subhajit Sanyal²

¹Institute for Computational and Mathematical Engineering (ICME), Stanford University ²Amazon ³Department of Mathematics, Stanford University

Multi-objective optimization

Consider optimizing over m possibly conflicting objective functions simultaneously:

 $\min_{\mathbf{x}\in\mathcal{D}}\mathbf{f}(\mathbf{x})=(f_1(\mathbf{x}),\cdots,f_m(\mathbf{x}))$

- Pareto Optimality: $\mathbf{x}^* \in \mathcal{D}$ s.t. $\nexists \mathbf{x}' \in \mathcal{D}$, $\begin{cases} f_i(\mathbf{x}') \leq f_i(\mathbf{x}^*), & \forall i \in [m] \\ f_j(\mathbf{x}') < f_j(\mathbf{x}^*), & \exists j \in [m] \end{cases}$
- Locally Pareto Optimal: \mathbf{x}^* is Pareto optimal in a neighborhood of \mathbf{x}^*
- Pareto Front \mathcal{P} : Set of all Pareto optimal solutions

Our goal is to find a set of *diversified* solutions $\hat{\mathcal{P}}$ that profiles the Pareto front \mathcal{P} .

Challenge: Previous methods struggle to deal with Pareto fronts with *complicated geometry*, that are *non-convex*, *non-smooth*, or even *discontinuous*, without any prior knowledge.

• Birth-Death Dynamic (Teleportation): $\partial_t \log \rho_t = -\delta_{\rho} \mathcal{E}[\rho_t] := -\Lambda_t$, where

$$\Lambda_{(\ell+1/2)\tau} \approx \delta_{\rho} \mathcal{E}[\rho_t] \left(\mathbf{x}_k^{(\ell+1/2)} \right) - \frac{1}{N} \sum_{k'=1}^N \delta_{\rho} \mathcal{E}[\rho_t] \left(\mathbf{x}_{k'}^{(\ell+1/2)} \right).$$

To update $\mathbf{x}_{k}^{(\ell+1/2)}$ to $\mathbf{x}_{k}^{(\ell+1)}$, depending on sgn $\Lambda_{(\ell+1/2)\tau}$, one would • Either duplicate it w/prob exp $\left(-\Lambda_{(\ell+1/2)\tau}\tau/2\right) - 1$ and remove one random • Or remove it w/prob $1 - \exp\left(-\Lambda_{(\ell+1/2)\tau}\tau/2\right)$ and duplicate one random

Main Methodological Takeaways

- **Transportation**: Langevin dynamics move the particles towards the Pareto front while keeping each other apart
- *Teleportation*: Birth-death dynamics eliminate the particles that are only locally

Wasserstein-Fisher-Rao Gradient Flow

Name	Metric	Gradient Flow
Wasserstein	$\inf\left\{\int_0^1 \int \ \mathbf{v}_t\ ^2 \mathrm{d}\rho_t \mathrm{d}t \middle \partial_t \rho_t = -\nabla \cdot (\rho_t \mathbf{v}_t)\right\}$	$\partial_t \rho_t = \nabla \cdot (\rho_t \nabla \delta_\rho \mathcal{E}[\rho_t])$
Fisher-Rao	$\inf\left\{\int_0^1 \int \widetilde{\beta}_t^2 \mathrm{d}\rho_t \mathrm{d}t \middle \partial_t \rho_t = \rho_t \widetilde{\beta}_t\right\}$	$\partial_t \rho_t = -\rho_t \widetilde{\delta_\rho \mathcal{E}[\rho_t]}$
Wasserstein- Fisher-Rao	$\inf \left\{ \int_0^1 \int \left(\ \mathbf{v}_t\ ^2 + \widetilde{\beta}_t^2 \right) \mathrm{d}\rho_t \mathrm{d}t \right $ $\partial_t \rho_t = -\nabla \cdot \left(\rho_t \mathbf{v}_t\right) + \rho_t \widetilde{\beta}_t \right\}$	$\partial_t \rho_t = \nabla \cdot (\rho_t \nabla \delta_\rho \mathcal{E}[\rho_t]) - \rho_t \widetilde{\delta_\rho \mathcal{E}[\rho_t]}$

where $\widetilde{\cdot} = \cdot - \mathbb{E}_{\rho_t} [\cdot], \delta_{\rho} \mathcal{E}[\rho]$ is the Fréchet derivative of $\mathcal{E}[\rho]$

We perform the Wasserstein-Fisher-Rao gradient flow that evolve a probability distribution ρ_t over \mathcal{D} to minimize a functional $\mathcal{E}[\rho_t]$ which should be designed such that its minimizers satisfies:

- Global Pareto Optimality: ρ^* should not cover those only *locally* Pareto optimal
- **Diversity:** ρ^* should be close to and span the entirety of \mathcal{P}

Methodology

Let $\mathcal{E}[\rho] = \alpha_1 \mathcal{F}_1[\rho] + \alpha_2 \mathcal{F}_2[\rho] + \beta \mathcal{G}[\rho] - \gamma \mathcal{H}[\rho]$, where each term is defined as follows:

• **Objective Functions:** ensure local Pareto optimality

$$\mathcal{F}_1[\rho] = \int_{\mathcal{D}} \|\mathbf{g}^{\dagger}(\mathbf{x})\|^2 \rho(\mathrm{d}\mathbf{x}), \text{ where } \mathbf{g}^{\dagger}(\mathbf{x}) = \operatorname*{argmin}_{\|\mathbf{g}\| \le 1} \min_{i \in [m]} -\mathbf{g}^{\top} \nabla f_i(\mathbf{x})$$

- Small $\|\mathbf{g}^{\dagger}\|$ indicates misalignment among the objective function, *i.e.* \mathbf{x} is close to local Pareto optimality [2];
- **Dominance Potential:** promote global Pareto optimality

Pareto optimal, ensuring global Pareto optimality even on challenging tasks with complicated Pareto fronts

Experiment Results

• ZDT3 Problem [6]:

• DTLZ7 Problem [1]:

$$\mathcal{F}_{2}[\rho] = \int_{\mathcal{D}} \int_{\mathcal{P}} D(\mathbf{f}(\mathbf{x}), \mathbf{f}(\mathbf{y})) \mu_{\mathcal{P}}(\mathrm{d}\mathbf{y}) \rho(\mathrm{d}\mathbf{x}),$$

where the asymmetric kernel $D(\mathbf{f}(\mathbf{x}), \mathbf{f}(\mathbf{y})) = \prod_{i=1}^{m} \max \{0, f_i(\mathbf{x}) - f_i(\mathbf{y})\}$ and is non-zero if and only if \mathbf{x} is dominated by \mathbf{y} .

- Entropy: encourage diversity $-\mathcal{H}[\rho] = \int_{\mathcal{D}} \rho(\mathbf{x}) \log \rho(\mathbf{x}) d\mathbf{x}$
- Repulsive Potential: encourage diversity

where th

$$\mathcal{G}[\rho] = \frac{1}{2} \int_{\mathcal{D} \times \mathcal{D}} \rho(\mathrm{d}\mathbf{x}) R(\mathbf{f}(\mathbf{x}), \mathbf{f}(\mathbf{y})) \rho(\mathrm{d}\mathbf{y}),$$

ne repulsive kernel $R(\mathbf{x}, \mathbf{y}) = \frac{1}{\|\mathbf{x} - \mathbf{y}\|}$ or $\exp\left(-\frac{\|\mathbf{x} - \mathbf{y}\|^2}{\sigma^2}\right)$

Theoretical Analysis

Theorem 1. The following decay of the functional $\mathcal{E}[\rho_t]$ holds:

$$\partial_t \mathcal{E}[\rho_t] = -\int_{\mathcal{D}} \rho_t \left\| \nabla \delta_{\rho} \mathcal{E}[\rho_t] \right\|^2 + \rho_t \widetilde{\delta_{\rho} \mathcal{E}[\rho_t]}^2 d\mathbf{x} \le 0.$$

Furthermore, if $\beta \wedge \gamma > 0$, the density ρ_t converges to the unique minimizer ρ^* of $\mathcal{E}[\rho]$, as $t \to \infty$.

Theorem 2. Assume $\inf_{\mathbf{x}\in\mathcal{D}}\rho_0(\mathbf{x})/\rho^*(\mathbf{x}) \ge e^{-M}$ with $\beta = 0$, the following exponential convergence holds:

 $\operatorname{KL}(\rho_t \| \rho^*) \le M e^{-\gamma t} + e^{-\gamma t + M e^{-\gamma t}} \operatorname{KL}(\rho_0 \| \rho^*).$

Algorithm

We adopt interacting particle method, discretize ρ_t by $\rho_t \approx \frac{1}{N} \sum_{k=1}^n \delta(\mathbf{x} - \mathbf{x}_k)$, and approximate the Wasserstein-Fisher-Rao gradient flow by the splitting scheme [3]

- MSLR-WEB10K Dataset [5]: a Learning-To-Rank (LTR) [4] dataset:
 Query groups: Ψ = {Ψ^(p)}^{|Ψ|}_{p=1}, |Ψ| = 10⁴
 - Items : $|\Psi^{(p)}| = n^{(p)}$, and $\forall j \in [n^{(p)}]$, an item is characterized by a feature vector $\mathbf{x}_{i}^{(p)} \in \mathbb{R}^{d_{f}}$, and 6 associated relevance labels $y_{i}^{(p),i}$, $i \in [6]$
 - Feasible region \mathcal{D} : the space of 3-layer Multi-Layer Perceptrons (MLPs), parametrized by θ
 - Objective functions: loss functions corresponding to each label $\{y_j^{(p),i}\}_{j=1}^{n^{(p)}}$

$$\mathcal{L}_{i}(\theta; \Psi) = \frac{1}{|\Psi|} \sum_{p=1}^{|\Psi|} \ell\left(\{f_{\theta}(\mathbf{x}_{j}^{(p)})\}_{j=1}^{n^{(p)}}; \{y_{j}^{(p),i}\}_{j=1}^{n^{(p)}}\right),\$$

where $\ell(\cdot, \cdot)$ is the query group-wise loss function (e.g. NDCG, CE loss, etc.)

where *hypervolume* is the volume of the dominated region of $\hat{\mathcal{P}}$ w.r.t. a reference point \boldsymbol{r} , higher is better

References

that alternatively updates the following:

• Overdamped Langevin Dynamics (Transportation):

 $\partial_t \rho_t = \nabla \cdot \left(\rho_t \nabla \left(\delta_\rho \mathcal{F} + \delta_\rho \mathcal{G}[\rho_t] \right) \right) + \gamma \Delta \rho_t,$

as a Fokker-Planck equation, corresponds to the following Langevin dynamics:

which can be discretized into

$$\mathbf{x}_{k}^{(\ell+1/2)} = \mathbf{x}_{k}^{(\ell)} - \frac{\tau}{2} \nabla \left(\delta_{\rho} \mathcal{F} + \delta_{\rho} \mathcal{G}[\rho_{t}] \right) + \sqrt{\gamma \tau} \varepsilon_{k}^{(\ell)}$$

- [1] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable multi-objective optimization test problems. In *Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No. 02TH8600)*, volume 1, pages 825–830. IEEE, 2002.
- [2] J.-A. Désidéri. Multiple-gradient descent algorithm (mgda) for multiobjective optimization. *Comptes Rendus Mathematique*, 350(5-6):313–318, 2012.
- [3] T. O. Gallouët and L. Monsaingeon. A jko splitting scheme for kantorovich-fisher-rao gradient flows. SIAM Journal on Mathematical Analysis, 49(2):1100–1130, 2017.
- [4] T.-Y. Liu et al. Learning to rank for information retrieval. *Foundations and Trends*® in Information Retrieval, 3(3):225–331, 2009.
- [5] T. Qin and T.-Y. Liu. Introducing letor 4.0 datasets. *arXiv preprint arXiv:1306.2597*, 2013.
- [6] E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary algorithms: Empirical results. *Evolutionary computation*, 8(2):173–195, 2000.

Check out our paper for more details!

The 27th International Conference on AISTATS, Valencia, Spain

{yinuoren, lexing}@stanford.edu, {tesixiao, gangwt, anshuka, holakou, subhajs}@amazon.com