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Introduction

Liu et al. [1] showed transformers can simulate DFA with O log T layers (even O(1) in some

cases!)

This result sheds light on the algorithmic capabilities of the transformer architecture

Weighted Finite Automata

A weighted finite automaton (WFA) of n states over Σ is a tuple A = 〈α, {Aσ}σ∈Σ, β〉, where

α, β ∈ Rn are the initial and final weight vectors

Aσ ∈ Rn×n is the matrix containing the transition weights associated with each symbol σ ∈ Σ

EveryWFA A with real weights realizes a function fA : Σ∗ → R, i.e. given a string x = x1 · · · xt ∈
Σ∗, it returns fA(x) = α>Ax1 · · · Axtβ = α>Axβ.

Example Consider the following WFA with 2 states on Σ = {a, b}

Weighted Tree Automata

Binary Trees

Given a finite alphabet Σ, the set of binary trees with leafs labeled by symbols in Σ is denoted

by TΣ. Formally, TΣ is the smallest set such that Σ ⊂ TΣ and (t1, t2) ∈ TΣ for all t1, t2 ∈ TΣ.

WTAs

Aweighted tree automaton (WTA) A with n states on TΣ is a tuple 〈α ∈ Rn, T ∈ Rn×n×n, {vσ ∈
Rn}σ∈Σ〉. A WTA A computes a function fA : TΣ → R defined by fA(t) = 〈α, µ(t)〉 where the

mapping µ : TΣ → Rn is recursively defined by

µ(σ) = vσ for all σ ∈ Σ,
µ((t1, t2)) = T ×2 µ(t1) ×3 µ(t2) for all t1, t2 ∈ TΣ.

Example

The Transformer Architecture

The transformer architecture in our construction is similar to the encoder in the original trans-

former architecture [2]. The model is defined as follows

Input: X ∈ RT×d where T is sequence length and d is embedding dimension

Self-attention block:

f (X) = softmax(XWQW>
KX>)XWV ,

Attention layer fattn: h copies of f , concatenate the outputs

Feedforward layer fmlp: Simple feedforward MLP

Full L-layer model, with ftf : RT×d → RT×d :

ftf = f
(L)
mlp

◦ f
(L)
attn ◦ f

(L−1)
mlp

◦ f
(L−1)
attn ◦ . . . ◦ f

(1)
mlp

◦ f
(1)
attn.

SimulatingWFA

Exact Simulation

Given a WFA A over some alphabet Σ, a function f : ΣT → RT×n exactly simulates A at length

T if, for all x ∈ ΣT as input, we have f (x) = A(x), where A(x) = (α>, α>Ax1, . . . , α>Ax1:T )>.

Approximate Simulation

Given a WFA A over some alphabet Σ, a function f : ΣT → RT×n approximately simulates A at

length T with precision ε > 0 if for all x ∈ ΣT , we have ‖f (x) − A(x)‖F < ε.

Transformer Simulation

Figure 1. Simulation of the WFA computation over the input w = abba with a transformer

SimulatingWTA

Simulation by a function

Given aWTAA = 〈α, T , {vσ}σ∈Σ〉with n states on TΣ, we say that a function f : (Σ∪{[[, ]]})T →
(Rn)T simulates A at length T if for all trees t ∈ TΣ such that |str(t)| ≤ T , f (str(t))i = µ(τi) for
all i ∈ It.

Simulation by a family of functions

We say that a family of functions F simulates WTAs with n states at length T if for anyWTA A
with n states there exists a function f ∈ F that simulates A at length T .

Transformer Simulation

WTA States Computation

WTA Output

Input Tree

Figure 2. Computation of a WTA on the input tree t = (a, ((b, b), b)) (left) and simulation of the WTA computation

over t with a transformer (right)

Main Theoretical Results

WFA

Theorem 1 Transformers using bilinear layers in place of an MLP and hard attention can ex-

actly simulate allWFAswith n states at length T , with depth O(log T ), embedding dimension

O(n2), attention width O(n2), MLP width O(n2) and O(1) attention heads.

Theorem 2 Transformers can approximately simulate all WFAs with n states at length T , up
to arbitrary precision ε > 0, with depth O(log T ), embedding dimension O(n2), attention
width O(n2), MLP width O(n4) and O(1) attention heads.

WTA

Theorem 3 Transformers can approximately simulate all WTAs A with n states at length T ,
up to arbitrary precision ε > 0, with embedding dimension O(n), attention width O(n), MLP

width O(n3) and O(1) attention heads. Moreover:

Simulation over arbitrary trees can be done with depth O(T )
Simulation over balanced trees (trees whose depth is of order log(T )) with depth

O(log(T )).

Experimental Results
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Figure 3. Experimental results for simulation of counting automata. Right: we use an automaton which counts the

number of 0s in Σ = {0, 1} and vary the sequence length. Left: we use k-counting automata and vary the

embedding size

Discussion

For both figures, increasing layers/embedding dimension lowers the MSE

For Figure (a) this trend is consistent with theory (shown by the dotted lines)

For Figure (b) stabilization does not agree as closely with our theoretical results (shown as

dotted lines).

Conclusion

We define simulation of weighted automata for sequences and trees

We derive the notion of approximate simulation and how it applies to transformers

We show that transformers can simulate WFAs with O(log T ) layers
We show transformers can simulate WTAs with O(log T ) layers
Our results extend the ones of Liu et al. for DFAs in two directions: from boolean to real

weights and from sequences to trees

Future Work

Our results mostly concern expressivity not learnability. Possibility to analyze learnability

with training dynamics analysis

Our results mostly provide upper bounds. It could be interesting to derive lower bounds on

the expressivity of transformers
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