Michael Rizvi¹

Introduction

- Liu et al. [1] showed transformers can **simulate DFA** with $\mathcal{O} \log T$ layers (even $\mathcal{O}(1)$ in some cases!)
- This result sheds light on **the algorithmic capabilities** of the transformer architecture

Weighted Finite Automata

A weighted finite automaton (WFA) of n states over Σ is a tuple $\mathcal{A} = \langle \boldsymbol{\alpha}, \{\mathbf{A}^{\sigma}\}_{\sigma \in \Sigma}, \boldsymbol{\beta} \rangle$, where

- $\alpha, \beta \in \mathbb{R}^n$ are the initial and final weight vectors
- $\mathbf{A}^{\sigma} \in \mathbb{R}^{n \times n}$ is the matrix containing the transition weights associated with each symbol $\sigma \in \Sigma$

Every WFA \mathcal{A} with real weights realizes a function $f_A: \Sigma^* \to \mathbb{R}$, *i.e.* given a string $x = x_1 \cdots x_t \in \mathbb{R}$ Σ^* , it returns $f_{\mathcal{A}}(x) = \boldsymbol{\alpha}^\top \mathbf{A}^{x_1} \cdots \mathbf{A}^{x_t} \boldsymbol{\beta} = \boldsymbol{\alpha}^\top \mathbf{A}^x \boldsymbol{\beta}$.

Example Consider the following WFA with **2** states on $\Sigma = \{a, b\}$

Jniversité

de Montréal

Weighted Tree Automata

Binary Trees

Given a finite alphabet Σ , the set of binary trees with leafs labeled by symbols in Σ is denoted by \mathscr{T}_{Σ} . Formally, \mathscr{T}_{Σ} is the smallest set such that $\Sigma \subset \mathscr{T}_{\Sigma}$ and $(t_1, t_2) \in \mathscr{T}_{\Sigma}$ for all $t_1, t_2 \in \mathscr{T}_{\Sigma}$.

WTAs

A weighted tree automaton (WTA) \mathcal{A} with n states on \mathscr{T}_{Σ} is a tuple $\langle \boldsymbol{\alpha} \in \mathbb{R}^{n}, \mathcal{T} \in \mathbb{R}^{n \times n \times n}, \{ \mathbf{v}_{\sigma} \in \mathbb{R}^{n} \}$ $\mathbb{R}^n_{\sigma\in\Sigma}$. A WTA \mathcal{A} computes a function $f_{\mathcal{A}}: \mathscr{T}_{\Sigma} \to \mathbb{R}$ defined by $f_{\mathcal{A}}(t) = \langle \boldsymbol{\alpha}, \mu(t) \rangle$ where the mapping $\mu : \mathscr{T}_{\Sigma} \to \mathbb{R}^n$ is recursively defined by

- $\mu(\sigma) = \mathbf{v}_{\sigma}$ for all $\sigma \in \Sigma$,
- $\mu((t_1, t_2)) = \mathcal{T} \times_2 \mu(t_1) \times_3 \mu(t_2)$ for all $t_1, t_2 \in \mathscr{T}_{\Sigma}$.

Example

The Transformer Architecture

The transformer architecture in our construction is similar to the **encoder in the original trans**former architecture [2]. The model is defined as follows

- Input: $X \in \mathbb{R}^{T \times d}$ where T is sequence length and d is embedding dimension
- Self-attention block:

 $f(\mathbf{X}) = \operatorname{softmax}(\mathbf{X}\mathbf{W}_{Q}\mathbf{W}_{K}^{\top}\mathbf{X}^{\top})\mathbf{X}\mathbf{W}_{V},$

- Attention layer f_{attn} : h copies of f, concatenate the outputs
- Feedforward layer f_{mlp} : Simple feedforward MLP

Full *L*-layer model, with $f_{tf} : \mathbb{R}^{T \times d} \to \mathbb{R}^{T \times d}$:

$$f_{\mathrm{tf}} = f_{\mathrm{mlp}}^{(L)} \circ f_{\mathrm{attn}}^{(L)} \circ f_{\mathrm{mlp}}^{(L-1)} \circ f_{\mathrm{attn}}^{(L-1)} \circ \ldots \circ f_{\mathrm{mlp}}^{(1)} \circ f_{\mathrm{attn}}^{(1)}.$$

Simulation by a family of functions

Figure 2. Computation of a WTA on the input tree t = (a, ((b, b), b)) (left) and simulation of the WTA computation over t with a transformer (right)

WFA

WTA

Simulating Weighted automata over Sequences and Trees

Maude Lizaire¹ Clara Lacroce² Guillaume Rabusseau¹

¹Université de Montréal

²McGill University

Simulating WFA

Exact Simulation

Given a WFA \mathcal{A} over some alphabet Σ , a function $f: \Sigma^T \to \mathbb{R}^{T \times n}$ exactly simulates \mathcal{A} at length T if, for all $x \in \Sigma^T$ as input, we have $f(x) = \mathcal{A}(x)$, where $\mathcal{A}(x) = (\boldsymbol{\alpha}^{\top}, \boldsymbol{\alpha}^{\top} \mathbf{A}^{x_1}, \dots, \boldsymbol{\alpha}^{\top} \mathbf{A}^{x_{1:T}})^{\top}$.

Approximate Simulation

Given a WFA \mathcal{A} over some alphabet Σ , a function $f: \Sigma^T \to \mathbb{R}^{T \times n}$ approximately simulates \mathcal{A} at length T with precision $\epsilon > 0$ if for all $x \in \Sigma^T$, we have $||f(x) - \mathcal{A}(x)||_F < \epsilon$.

Simulating WTA

Simulation by a function

Given a WTA $\mathcal{A} = \langle \boldsymbol{\alpha}, \mathcal{T}, \{\mathbf{v}_{\sigma}\}_{\sigma \in \Sigma} \rangle$ with *n* states on \mathscr{T}_{Σ} , we say that a function $f : (\Sigma \cup \{\llbracket, \rrbracket\})^T \to \mathbb{C}$ $(\mathbb{R}^n)^T$ simulates \mathcal{A} at length T if for all trees $t \in \mathscr{T}_{\Sigma}$ such that $|\operatorname{str}(t)| \leq T$, $f(\operatorname{str}(t))_i = \mu(\tau_i)$ for all $i \in \mathcal{I}_t$.

We say that a family of functions \mathcal{F} simulates WTAs with n states at length T if for any WTA \mathcal{A} with n states there exists a function $f \in \mathcal{F}$ that simulates \mathcal{A} at length T.

Main Theoretical Results

Theorem 1 Transformers using bilinear layers in place of an MLP and hard attention can exactly simulate all WFAs with n states at length T, with depth $\mathcal{O}(\log T)$, embedding dimension $\mathcal{O}(n^2)$, attention width $\mathcal{O}(n^2)$, MLP width $\mathcal{O}(n^2)$ and $\mathcal{O}(1)$ attention heads.

Theorem 2 Transformers can *approximately* simulate all WFAs with n states at length T, up to arbitrary precision $\epsilon > 0$, with depth $\mathcal{O}(\log T)$, embedding dimension $\mathcal{O}(n^2)$, attention width $\mathcal{O}(n^2)$, MLP width $\mathcal{O}(n^4)$ and $\mathcal{O}(1)$ attention heads.

- **Theorem 3** Transformers can *approximately* simulate all WTAs \mathcal{A} with *n* states at length *T*, up to arbitrary precision $\epsilon > 0$, with embedding dimension $\mathcal{O}(n)$, attention width $\mathcal{O}(n)$, MLP width $\mathcal{O}(n^3)$ and $\mathcal{O}(1)$ attention heads. Moreover:
- Simulation over arbitrary trees can be done with depth $\mathcal{O}(T)$ • Simulation over balanced trees (trees whose depth is of order log(T)) with depth $\mathcal{O}(\log(T)).$

embedding size

Pautomac nb	4	12	14	20	30	31	33	38	39	45	
num states	12	12	15	11	9	12	13	14	6	14	
alphabet size	4	13	12	18	10	5	15	10	14	19	
type	\mathbf{PFA}	PFA	HMM	HMM	PFA	\mathbf{PFA}	HMM	HMM	\mathbf{PFA}	HMM	
symbol sparsity	0.4375	0.3526	0.4944	0.3939	0.6555	0.3833	0.5949	0.7857	0.4167	0.8008	
nb layers for ϵ	8	6	2	6	-	8	-	2	-	-	
								~ · ·			

- dotted lines).

- weights and from sequences to trees

Future Work

- with training dynamics analysis
- the expressivity of transformers
- preprint arXiv:2210.10749, 2022.

Experimental Results

Figure 3. Experimental results for simulation of counting automata. Right: we use an automaton which counts the number of Os in $\Sigma = \{0, 1\}$ and vary the sequence length. Left: we use k-counting automata and vary the

Table 1: Minimum number of layers to reach error $<\epsilon = 10^{-\epsilon}$

Discussion

For both figures, increasing layers/embedding dimension lowers the MSE • For Figure (a) this trend is **consistent with theory** (shown by the dotted lines) • For Figure (b) stabilization **does not agree as closely** with our theoretical results (shown as

Conclusion

We define simulation of weighted automata for sequences and trees • We derive the notion of **approximate simulation** and how it applies to transformers • We show that transformers can simulate WFAs with $\mathcal{O}(\log T)$ layers • We show transformers can simulate WTAs with $\mathcal{O}(\log T)$ layers • Our results extend the ones of Liu et al. for DFAs in **two directions**: from **boolean to real**

• Our results mostly concern **expressivity** not **learnability**. Possibility to analyze learnability

• Our results mostly provide **upper bounds**. It could be interesting to derive **lower bounds** on

References

[1] Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers learn shortcuts to automata. arXiv

[2] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is All You Need. Advances in Neural Information Processing Systems, pages 5998–6008, 2017.

Scan me for paper link!