Conformalized Semi-supervised Random Forest for Classification and Abnormality Detection

港 大 學 E UNIVERSITY OF HONG KONG

NORTHWESTERN UNIVERSITY

Conformal Prediction

Definition

Based on the previous *n* observations, the conformal prediction creates a prediction set $\hat{C}_n(x_{n+1})$ for the new instance x_{n+1} and guarantee,

 $\mathbb{P}(y_{n+1} \in \hat{C}_n(x_{n+1})) \ge 1 - \alpha,$

where $\alpha \in (0,1)$ is the allowed miscoverage level.

Assumption & Challenge

Classification uncertainty quantification assumes training and test samples are i.i.d.

However, in scenarios with data distribution shifts, like healthcare and network attacks, the above assumption fails.

Algorithm Details

Input : Training Data {
$$(x_i, y_i), i \in \mathcal{I}_{tr}$$
}, Test
Data { $x_i, i \in \mathcal{I}_{te}$ }, \tilde{B} and w (1 by
default.)Output: Prediction sets $\hat{C}_i(x_i)$ for $i \in \mathcal{I}_{te}$.1 for $k = 1, \ldots, K$ do2Sample B from Binomial(\tilde{B} ; $(1 - \frac{1}{n_k + 1})^{n_k}$). for
 $b = 1, \ldots, B$ do3Let $\mathcal{I}_k^b, \mathcal{I}_{te}^b$ be the Bootstraps of \mathcal{I}_k (index
of training class k) and \mathcal{I}_{te} . Let $\tilde{\mathcal{I}}_{other}$ be
the Bootstrap of size min($\lceil n_{te}w \rceil, n - n_k$)
from the remaining training sample indices
 $\mathcal{I} \setminus \mathcal{I}_k$.4Grow a single random forest tree classifier
 $\hat{G}^b(x)$ separating different labeled classes
and the test samples using
 $\mathcal{I}_k^b \cup \mathcal{I}_{te}^b \cup \tilde{\mathcal{I}}_{other}$.5end6For sample pair $i \in \mathcal{I}_{te}, i' \in \mathcal{I}_k$, set
 $\mathcal{B}_{ii'} = \{b : i \notin \mathcal{I}_{be}^t, i' \notin \mathcal{I}_b^k\}$ and construct the
conformal score function
 $\hat{s}^{ii'}(x, k; \mu) = \left(\sum_{b \in \mathcal{B}_{ii'}} \hat{G}_b^b(x)\right) / |\mathcal{B}_{ii'}|.$ 7end8for $k = 1, \ldots, K$ do10Construct \hat{c}_{ik} for sample i and class k via
 $|$ eq. (3).11end12Construct $\hat{C}(x_i) = \{k : \hat{s}_{ik} \ge \alpha\}.$

Coverage Guarantee for True Labels

Suppose the generalized label shift model holds where features from class k are i.i.d generated from a distribution P_k . For any fixed integers $\tilde{B} \geq 1$, the constructed $\hat{C}_i(x)$ from CSForest satisfies:

$$P\left[k\in$$

for all $i \in \mathcal{I}_{te}$ and $k = 1, \ldots, K$.

Experimental Settings

- **Q1** (outliers w/o shift): Can CSForest efficiently identify outliers and accurately predict inliers without traditional label shift?
- **Q2** (shift w/o outliers): With no outliers but traditional label shift, can CSForest match or outperform other classifiers?
- Q3: Does CSForest is stable as the training and test sample sizes vary?

Yujin Han¹ *, Mingwenchan Xu^2 *, Leying Guan³

Motivation

How to

- Assess uncertainty under distribution changes?
- Identify test samples (i.e., outliers) where predictions should not rely solely on the model trained with the training data?

Distribution Shift

For class k, its mixture proportion is π_k , and feature density is $f_k(x)$, with $\sum_{k=1}^{\infty} \pi_k = 1$. The test distribution $\mu(x)$ is $\mu(x) := \sum \tilde{\pi}_k f_k(x) + \delta \cdot f_R(x)$

Traditional label shift: $\{\pi_k\} \neq \{\tilde{\pi}_k\}$; Outliers: $\delta \neq 0$

Q3

Method and Experiments

$$\hat{C}(x_i) | y_i = k \Big] \ge 1 - 2\alpha,$$

Experimental Results

Dataset	Method	outliers w/o shift		shift w/o outliers	
		Type I Error	Type II Error	Type I Error	Type II Erro
MNIST	CSForest	$0.049{\pm}0.006$	$\textbf{0.091} \pm \textbf{0.008}$	$0.048{\pm}0.016$	$0.291{\pm}0.03$
	BCOPS	$0.048 {\pm} 0.004$	$0.237{\pm}0.019$	$0.042{\pm}0.007$	$0.556{\pm}0.040$
	\mathbf{DC}	$0.049{\pm}0.008$	$0.890{\pm}0.021$	$0.046{\pm}0.016$	$0.968{\pm}0.022$
	CRF	$0.048 {\pm} 0.007$	$0.338 {\pm} 0.035$	$0.046{\pm}0.018$	$0.428{\pm}0.082$
	ACRF	$0.046{\pm}0.006$	$0.430{\pm}0.003$	$0.025{\pm}0.011$	$0.884{\pm}0.012$
	$\mathbf{ACRFshift}$	$0.046{\pm}0.006$	$0.432{\pm}0.009$	$0.055{\pm}0.013$	$0.828 {\pm} 0.015$
CIFAR-10	CSForest	$0.051{\pm}0.008$	$0.000 {\pm} 0.000$	$0.049{\pm}0.013$	0.009 ± 0.033
	BCOPS	$0.049{\pm}0.006$	$0.001 {\pm} 0.000$	$0.042{\pm}0.009$	$0.029 {\pm} 0.00$
	\mathbf{DC}	$0.046{\pm}0.007$	$0.048{\pm}0.091$	$0.039{\pm}0.010$	$0.071 {\pm} 0.11$
	CRF	$0.049{\pm}0.008$	$0.003 {\pm} 0.000$	$0.047{\pm}0.015$	$0.000 {\pm} 0.00$
	\mathbf{ACRF}	$0.003{\pm}0.001$	$0.402{\pm}0.001$	$0.040{\pm}0.009$	$0.221{\pm}0.02$
	$\mathbf{ACRFshift}$	$0.003{\pm}0.001$	$0.069{\pm}0.003$	$0.046{\pm}0.007$	$0.230{\pm}0.03$
FashionMNIST	CSForest	$0.050{\pm}0.005$	$0.266{\pm}0.018$	$0.038{\pm}0.009$	$0.311 {\pm} 0.04$
	BCOPS	$0.050{\pm}0.007$	$0.381{\pm}0.020$	$0.038{\pm}0.009$	$0.311{\pm}0.04$
	\mathbf{DC}	$0.051{\pm}0.007$	$0.666 {\pm} 0.033$	$0.038{\pm}0.013$	$0.584{\pm}0.06$
	\mathbf{CRF}	$0.051{\pm}0.006$	$0.514{\pm}0.021$	$0.038{\pm}0.014$	$0.804{\pm}0.08$
	ACRF	$0.051{\pm}0.006$	$0.537{\pm}0.013$	$0.054{\pm}0.009$	$0.835{\pm}0.02$
	$\mathbf{ACRF}\mathbf{shift}$	$0.046{\pm}0.005$	$0.481{\pm}0.019$	$0.072{\pm}0.021$	$0.814{\pm}0.03$
1.00	• •	1.00 -	• •	1.00	•
		er)			
0.75		iii 0.75		iplie	
		lo l			
0.50					•
		ype		ype	
0.25		► 0.25 -		F 0.25	
		L,			
50 100 per clas	150 200 s (both)	50 100 per	0 150 200 • class (train)	50 100 per o	150 2 class (test)
1.0 -		1.0 -		1.0 -	
0.8 -					
•		0) (()		r (or	
0.6		erro		9 .0 -	
					•
0.4 -		A 0.4		₫ 0.4 -	
					•
0.2	150 200	50 100	150 200	50 100	150 2
ner class	s (both)	ner	class (train)	per c	lass (test)

CSForest conformalized semi-supervised random forest Semi-supervised Random Forest Structure Differentiates between observed training classes and unlabeled test data. with Jackknife+aB Technique Handles the case of joint and asymmetric utilization of both training and test samples. Grow **B** semi-supervised random forest tree classifiers Conformal Score $s^{i,i'}(x, k; \mu, B_{ii'})$ Construction **B** Bootstrap Set-valued Prediction Dataset Construction **Test Data**

Conclusions

• Q1&Q2: CSForest shows the strongest capability to detect outliers (smaller type II errors) in both scenarios.

• Q3: CSForest detects outliers while maintaining **Iower inlier type II errors** across various sample sizes.

