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Main Contribution

Stochastic Gradient Barker Dynamics Algorithm

We develop the Stochastic Gradient Barker Dynamics Algorithm
(SGBD) by extending the stochastic gradient MCMC framework to
the Barker Proposal (Livingstone and Zanella [5]).

We study the bias introduced by the stochastic gradient noise and
devise strategies to eliminate or reduce it.

We compare SGBD to the stochastic gradient Langevin dynamics
algorithm (SGLD, Welling and Teh [9]) in numerical examples where
SGBD displays greater robustness to hyperparameter tuning.
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Analytical setting
Task: sampling from a target distribution of the form

π(θ) ∝ p(θ)
N∏
i=1

p(yi |xi , θ) = exp (g(θ)), θ ∈ Rd (1)

where p(θ) is the prior distribution and p(yi |xi , θ) is the likelihood of the
i-th observation.

The gradient of g(θ) is a sum of N terms,

∂jg(θ) =
N∑
i=1

∂jgi (θ), ∂jgi (θ) =
1

N
∂j log (p(θ)) + ∂j log (p(yi | xi , θ))

where ∂j stands for the partial derivative with respect to the j th

component of θ.

→ computing the gradient results in a Θ(N) cost per iteration.

Lorenzo Mauri, Giacomo Zanella Stochastic Gradient Barker Dynamics May 2, 2024 4 / 21



State of the Art

Gradient based MCMC:

explore the space efficiently;

can be computationally expensive (Θ(N) cost per iteration).

Stochastic gradient MCMC

Stochastic gradient MCMC have gained popularity as they combine
scalability to big size datasets with an efficient exploration of the space.
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Stochatic Gradient MCMC

SG-MCMC (e.g. SGLD, Welling and Teh [9]) replace the gradient with a
mini-batch estimate

∂̂jg(θ) =
N

n

∑
i∈Sn

∂jgi (θ) j = 1, . . . , p, (2)

where Sn is a subset of {1, . . . ,N} of size n≪ N sampled uniformly at
random.

Most SG-MCMC methods converge to the true posterior distribution
if the step-size is appropriately decreased to zero (Welling and
Teh [9], Chen et al. [3], Ding et al. [4], and Ma et al. [6]).

This strategy deteriorates mixing, and practitioners usually keep the
step-size fixed, which leads to non-negligible bias in the invariant
distribution (Brosse et al. [2]).
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The Barker Proposal (I)

The Barker Proposal (Livingstone and Zanella [5]) is a novel MCMC that
outperforms other gradient based algorithms in terms of robustness to
hyperparameter tuning.

Barker Proposal PDF

The Barker Proposal is a first order approximation of a π-invariant
process and its PDF is given by

QB(θ, θ + w) =
d∏

i=1

2p(∂jg(θ),wj)µσ(wj) θ,w ∈ Rd

p(δ, z) = (1 + exp(−zδ))−1 δ, z ∈ R

(3)

In our experiments, we take µσ = 0.5N (−σ, (0.1σ)2) + 0.5N (σ, (0.1σ)2),
as recommended in Vogrinc et al. [8].
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The Barker Proposal (II)
Algorithm 1: Unadjusted Barker Proposal

Input: θ(0) ∈ Rd , σ > 0
for t =1,. . . , T do

for j=1, . . . , d do

Draw w
(t)
j ∼ µσ(·);

Set b
(t)
j = 1 with probability p(∂jg(θ

(t−1)),w
(t)
j ), otherwise

b
(t)
j = −1;

Update θ
(t)
j ← θ

(t−1)
j + b

(t)
j w

(t)
j ;
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values of ∂jg(θ) (red).
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The Barker Proposal (III)

Combining Robustness and Efficiency

The size of the increment |wj | is independent of the gradient ∂jg(θ)
→ increased robustness to hyperparameter tuning and target
heterogeneity.

QB has the favourable high-dimensional scaling properties such as
a scaling of order d−1/3 as d diverges (Vogrinc et al. [8]).

Lorenzo Mauri, Giacomo Zanella Stochastic Gradient Barker Dynamics May 2, 2024 9 / 21



The Stochastic Gradient Barker Dynamics Algorithm

We apply the stochastic gradient MCMC framework to the Barker
proposal and develop three variants of the Stochastic Gradient Barker
Dynamics Algorithm (SGBD):

1 Vanilla SGBD (v-SGBD),

2 Corrected SGBD (c-SGBD),

3 Extreme SGBD (e-SGBD).
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Vanilla SGBD

v-SGBD replaces ∂jg(θ) with ∂̂jg(θ) in the Barker Proposal and is
equivalent to the Barker proposal with gradient shrunk towards zero.

Proposition 1

If ∂̂jg(θ) ∼ N
(
∂jg(θ), τ

2
θ

)
, we have∣∣∣E [

p
(
∂̂jg(θ),wj

)]
− p

(
cwj ,τθ∂jg(θ),wj

)∣∣∣ < 0.019, (4)

where cwj ,τθ := 1.702√
1.7022+w2

j τ
2
θ

.

The practical implication of (4) is an inflation of the variance of the
stationary distribution.
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Corrected SGBD

c-SGBD solves the issue replacing p (∂jg(θ),wj) with p̃
(
∂̂jg(θ),wj

)
,

where

p̃ (δ, z) :=

p

(
1.702√

1.7022−τ2θz
2
δ, z

)
if |z | < 1.702

τθ
,

1 (δz > 0) otherwise
, (5)

with 1(A) denoting the indicator function of the event A and τθ is the
standard deviation of ∂̂jg(θ). In practice, we adopt an online estimate for
τθ.

Proposition 2 (Approximate unbiasedness of p̃) - Informal

If ∂̂jg(θ) ∼ N
(
∂jg(θ), τ

2
θ

)
, and τθ is sufficiently small, then∣∣∣E [

p̃
(
∂̂jg(θ),wj

)]
− p(∂jg(θ),wj)

∣∣∣ < 0.019. (6)
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Extreme SGBD

e-SGBD replaces p (∂jg(θ),wj) with p̄
(
∂̂jg(θ),wj

)
= 1{∂̂jg(θ)wj>0}.

p̄ minimizes the bias for p if τθ is large among all symmetric
estimators for p (Proposition 4 in the article).

Hybrid between sampling and optimization algorithm (always moves
in the direction of the stochastic gradient).
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Binary Regression with Scale Heterogeneity (N=80000,
d=4, n=800)
We apply a Bayesian logistic regression to the Sepsis dataset from the UCI
repository. We do not scale the covariates to induce scale eterogeneity in
the posterior.

(a) Small posterior s.d. (b) Large posterior s.d.

Fig. 2. Red refers to v-SGLD and blue to v-SGBD. Black horizontal lines indicate the interval
centered at the posterior mean with two standard deviations width.
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Bayesian Matrix Factorization (N=80000, d=54080,
n=800)
We apply a Bayesian matrix factorization model (Salakhutdinov and Mnih
[7]) to the MovieLens dataset.

(a) Samples rMSE (b) MCMC rMSE

Fig. 3. Samples (left) and MCMC (right) estimates rMSE. Red refers to SGLD and blue to the
SGBD. Lighter and dotted lines refer to vanilla implementations of the algorithm, darker and
dashed-dotted lines to their extreme variants.
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Independent Component Analysis (N=14184, d=100,
n=100)
We apply an independent component analysis (Amari et al. [1]) model to
the MEG data.

(a) Samples log-likelihood (b) MCMC log-likelihood

Fig. 4. Log likelihood of each sample (left) and MCMC estimates (right) on held-out data. Red
refers to SGLD and blue to SGBD. For both algorithms, the vanilla (lighter dotted lines),
corrected (medium scale dashed lines) and extreme (darker dotted-dashed lines) versions are
displayed.
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Conclusion

1 We extended the Barker proposal to the stochastic gradient
setting, leading to the SGBD algorithm.

2 We studied the bias induced by stochastic gradient noise in the
Barker proposal and develop strategies to address it.

3 In numerical experiments, SGBD is more robust to
hyperparameters choice and to heterogeneity in the target
gradients (arising from e.g. skewness or ill-conditioning)

4 Interesting extensions include adding momentum (similarly to, e.g.,
SGHMC (Chen et al. [3])); developing adaptive variants that
optimally tunes the step-size across iterations; studying connections
with optimization schemes.
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Corrected SGBD - Pseudocode

Algorithm 2: Corrected Stochastic Gradient Barker Dynamics (c-SGBD)

input: θ(0) ∈ Rd , σ > 0, β ∈ (0, 1), {τ̂ (0)j }j=1,...,d

for t =1,. . . , T do
Draw Sn ⊂ {1, . . . ,N} uniformly at random;
for j=1, . . . , d do

Compute ∂̂jg(θ
(t−1)) using (2);

Update τ̂
(t)
j ←

(1− β)τ̂
(t−1)
j + β

√∑
i∈Sn

(∂jgi (θ(t−1))− 1
n

∑
i∈Sn

∂jgi (θ(t−1)))2

n−1 ;

Draw w
(t)
j ∼ N(σ, (0.1σ)2);

Set b
(t)
j = 1 with probability p̃

(
∂̂jg(θ

(t−1)),w
(t)
j

)
, where τθ is

replaced by τ̂
(t)
j , otherwise b

(t)
j = −1;

Update θ
(t)
j ← θ

(t−1)
j + b

(t)
j w

(t)
j ;
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