

Equivariant Bootstrapping for Imaging Inverse Problems

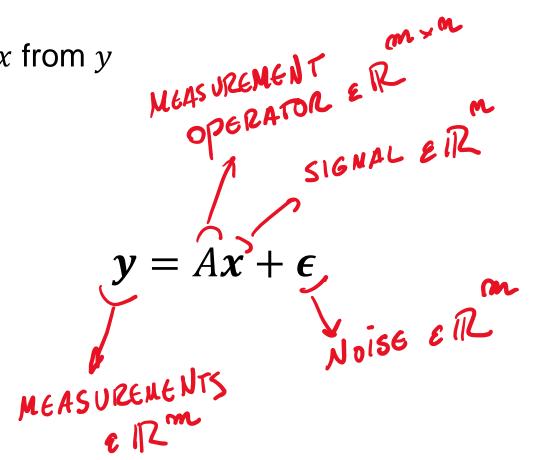
AISTATS 2024, Oral Presentation

Valencia, Spain

Julián Tachella (CNRS & ENS Lyon) & Marcelo Pereyra (Heriot-Watt University)

Inverse Problems

Goal: recover signal *x* from *y*



Examples

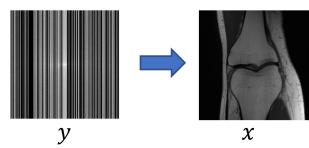
Magnetic resonance imaging

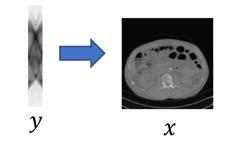
A = subset of Fourier modes
(k - space) of 2D/3D images

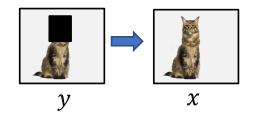
 A = 1D projections (sinograms) of 2D image

Image inpainting

• A = diagonal matrix with 1's and 0s.







Sampling Algorithms

Recent methods attempt to sample from the posterior distribution

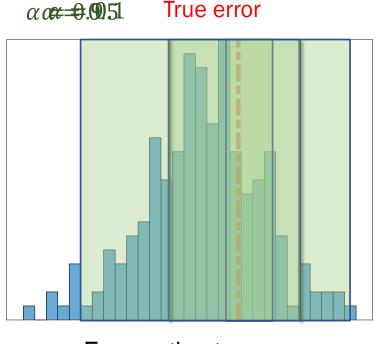
 $-\log p(\boldsymbol{x}|\boldsymbol{y}) \propto \frac{1}{2} ||\boldsymbol{y} - A\boldsymbol{x}||^2 - \log p(\boldsymbol{x})$

Algorithms:

- DDRM, DiffPIR, DPS (diffusion-based sampling)
- PnP-ULA (MCMC)
- Normalizing flows

Quantifying UQ

Calibration set $\{(x_i, y_i)\}_{i=1}^N$ Empirical α coverage $= \frac{1}{N} \sum_i \mathbf{1}_{x_i \in C_{\alpha}(y_i)}$ where $C_{\alpha}(y) = \{x : ||x - \hat{x}(y)|| < c_{\alpha}\}$



Error estimates

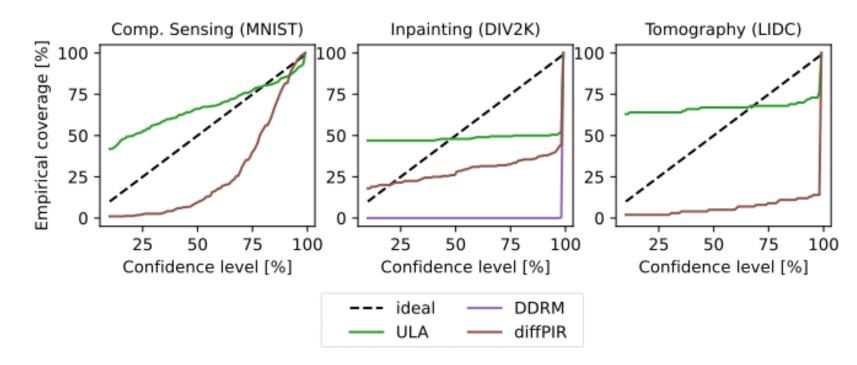
Pitfalls of UQ algorithms

Empirical observations:

X Require thousands network evals

X Fail to provide calibrated intervals

X Conformal calibration helps, but doesn't fix the problem



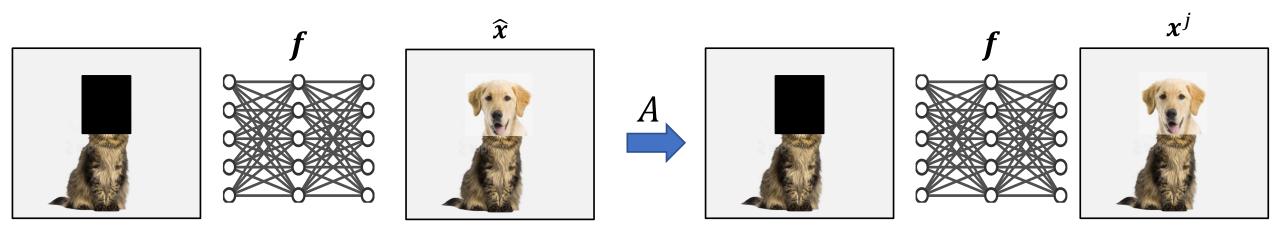
Revisiting the Bootstrap

Parametric bootstrap [Efron, 1986]: using $\hat{x} = f(y)$ as 'ground-truth',

For j = 1, ..., N

- Sample noise $\epsilon_j \sim N(0, I\sigma^2)$
- Bootstrap $x^j = f(A\widehat{x} + \epsilon_j)$
- Error estimates: $e^j = || \hat{x} x^j ||^2$

\mathbf{X} Bad UQ in the nullspace of A

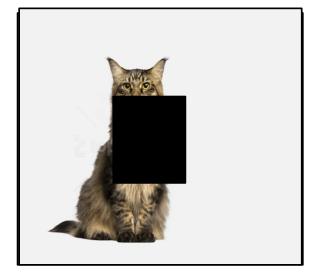


Symmetry Prior

Idea: Most natural signals sets \mathcal{X} are invariant to groups of transformations.

Example: translations, rotations and flips of 2D images

For all $g \in G$ we have $y = Ax = AT_g T_g^{-1} x = A_g x'$



Equivariant Bootstrap

Observation model
$$\begin{cases} g \sim G \\ \mathbf{y} = AT_g \mathbf{x} + \boldsymbol{\epsilon} \end{cases}$$

Using $\hat{x} = f(y)$ as 'ground-truth':

For j = 1, ..., r

- Sample transformation $g \sim G$ and noise $\epsilon_i \sim N(0, I\sigma^2)$
- Bootstrap $x^j = T_g^{-1} f(AT_g \hat{x} + \epsilon_j)$
- Error estimates: $e^j = || \hat{x} x^j ||^2$

Theory insights

• In the **noiseless** case, standard bootstrap gives $||\hat{x} - x|| = 0$ for any measurement consistent estimator verifying $A\hat{x} = y$.

Proposition (informal). For a linear & measurement consistent operator estimator with no noise, we have

$$\mathbb{E}_g ||\widehat{\mathbf{x}}(T_g A \widehat{\mathbf{x}}) - T_g \mathbf{x}|| = ||\widehat{\mathbf{x}} - \mathbf{x}|| + \text{bias}$$

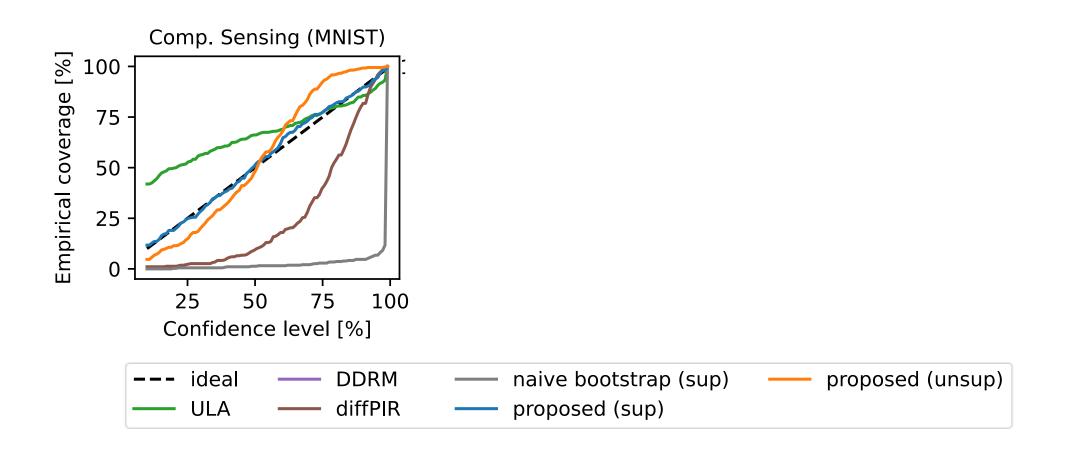
where the bias term is small if $\hat{x} \circ A$ is not equivariant.

• Equivariant bootstrapping is useful when *A* is not equivariant to the transformations.

Equivariance of Forward Operators

	Translation	Rotation	Permutation	Amplitude
Gaussian Blur	\bigstar			
Image Inpainting				\bigstar
Sparse-view CT	\bigstar			\bigstar
Accelerated MRI	\bigstar			\bigstar
Downsampling (no antialias)				\bigstar

UQ Experiments



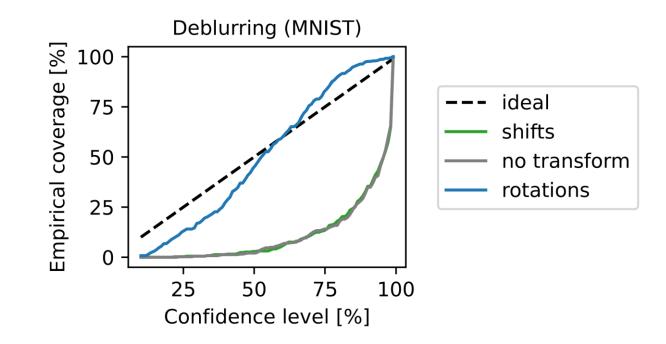
UQ Experiments

Table 1: Average test PSNR in dB for the evaluated methods.								
	Diffusion	Diffusion	ULA	Proposed bstrap	Proposed bstrap			
	(DDRM)	(diffPIR)	ULA	(unsup. model)	(sup. model)			
C. Sensing (MNIST)	-	-	28.54 ± 2.25	34.11 ± 2.09	33.9 ± 2.32			
Inpainting (DIV2K)	32.27 ± 3.95	30.51 ± 3.74	30.52 ± 3.35	31.56 ± 4.12	32.47 ± 3.87			
Tomography (LIDC)	-	37.02 ± 0.79	35.85 ± 0.54	37.38 ± 0.65	41.03 ± 0.91			

Table 2: Neural function evaluations (NFEs) per Monte Carlo (MC) sample.MethodDiffusionULABootstrapNFEs/MC sample100301

UQ Experiments

• Blur operators are shift-equivariant, thus shifts do not modify the nullspace of A



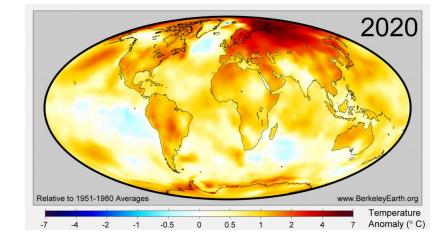
Conclusions

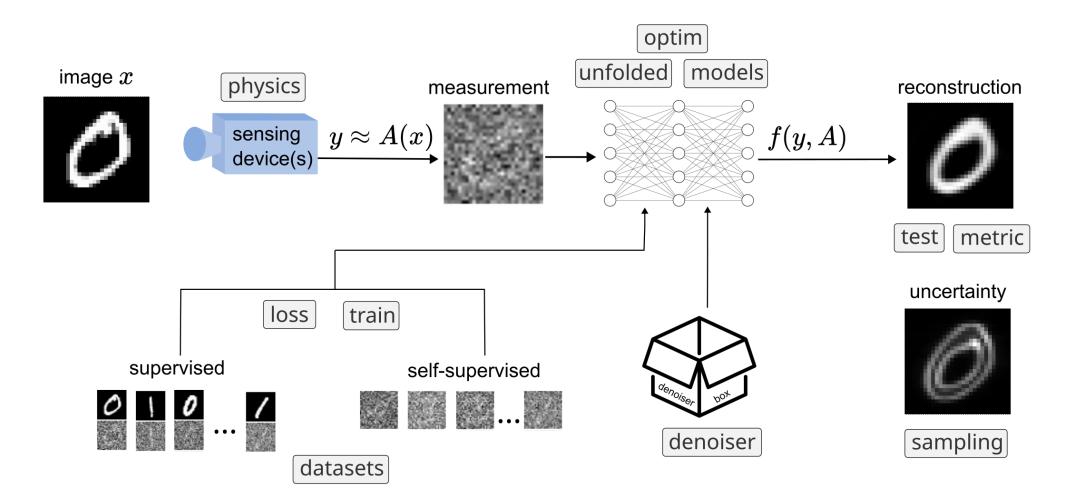
Take home messages

Symmetries in the data can play a key role in measuring uncertainty in the nullspace of the forward operator

Future work

- More efficient Reynolds averaging [Sannai, 2021]
- UQ challenge
- Other groups of transformations/data domains





Thanks for your attention!

Tachella.github.io

- ✓ Codes
- ✓ Presentations
- ✓ ... and more

https://github.com/tachella/equivariant_bootstrap