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The Problem

Nonconvex distributed optimization problem:

min
x∈Rd

f (x) = 1
G

∑
i∈G

fi(x)


fi(x) = 1

m

m∑
j=1

fi,j(x)

• G is the set of good/regular/non-Byzantine
clients, |G| = G
• B is the set of bad/malicious/Byzantine
clients
• G ⊔ B = [n], where n is the total number of
clients
• fi(x) – loss of the model x on the data stored
on worker i
• fi,j(x) – loss on the j-th example from the
local dataset of worker i

Goal: find x̂ such that E [∥∇f (x̂)∥2] ≤ ε2

Compressed learning

Unbiased compressor

E [Q(x)] = x, E
[
∥Q(x)∥2

]
≤ ω∥x∥2

Example: Rand-K ∈ U(d/K):

Q(x) := d

K

∑
i∈S

xiei

Contractive compressor

E
[
∥C(x) − x∥2

]
≤ (1 − α)∥x∥2

Example: Top-K ∈ B(K/d):

C(x) :=
d∑

i=d−K+1
x(i)e(i)

Assumptions

L-smoothness: The function f : Rd → R is
L-smooth, i.e.,

∥∇f (x) − ∇f (y)∥ ≤ L∥x − y∥
for any x, y ∈ Rd. Moreover, f∗ =
infx∈Rd f (x) > −∞.
Global Hessian variance [1]: There exists
L± ≥ 0 such that for all x, y ∈ Rd

1
G

∑
i∈G

∥∇fi(x) − ∇fi(y)∥2 − ∥∇f (x) − ∇f (y)∥2

≤ L2
±∥x − y∥2.

Local Hessian variance [2]: There exists
L± ≥ 0 such that for all x, y ∈ Rd the unbiased
mini-batched estimator ∆̂i(x, y) of ∆i(x, y) =
∇fi(x) − ∇fi(y) with batch size b satisfies

1
G

∑
i∈G

E
[
∥∆̂i(x, y) − ∆i(x, y)∥2

]
≤

L2
±
b

∥x − y∥2.

(B, ζ2)-heterogeneity [2]: There exist
B, ζ ≥ 0 such that for all x ∈ Rd

1
G

∑
i∈G

∥∇fi(x) − ∇f (x)∥2 ≤ B∥∇f (x)∥2 + ζ2.

Main contributions

⋄ Improved complexity bounds: Two new Byzantine-robust methods with unbiased
compression: Byz-VR-MARINA 2.0 and Byz-DASHA-PAGE, outperforming the previous SOTA
Byz-VR-MARINA by factors of

√
max{ω, m/b} and

√
max{ω3, m2ω/b2} in the leading term.

⋄ Smaller size of the neighborhood: Byz-VR-MARINA 2.0 and Byz-DASHA-PAGE
converge to a smaller neighborhood of the solution than their competitors. When B =
0, we prove that E[∥∇f(x)∥2] = O(cδ), matching the lower bound [3] and improving on
E[∥∇f (x)∥2] = O(cδ/p) of Byz-VR-MARINA.
⋄ Higher tolerance to Byzantine workers: When B > 0, our results guarantee
convergence in the presence of 1/p times more Byzantine workers than in the case of Byz-VR-
MARINA.
⋄ The first Byzantine-robust methods with EF: Two new Byzantine-robust methods
employing any contractive compressors – Byz-EF21 and Byz-EF21-BC. Additionally, Byz-EF21-
BC is the first provably Byzantine-robust algorithm using bidirectional compression.

Table: Summary of the complexity bounds in the general non-convex case. Columns: “Rounds” = the number of
communication rounds required to find x such that E [∥∇f (x)∥2] ≤ ε2; “ε ≤” = the lower bound for the best achievable
accuracy ε; “δ <” = the maximal ratio of Byzantine workers that the method can provably tolerate.

Method Rounds ε ≤ δ <

Byz-VR-MARINA (1)

[2]
1
ε2

(
1 +

√
max{ω2, mω

b }
(√

1
G +

√
cδ max{ω, m

b }
))

cδζ2

p−cδB
p

cB

Byz-VR-MARINA 2.0 (1) 1
ε2

(
1 +

√
max{ω2, mω

b }
(√

1
G +

√
cδ

))
cδζ2

1−cδB
1

(c+
√

c)B

Byz-DASHA-PAGE (1) 1
ε2

(
1 +

(
ω +

√
m
b

) (√
1
G +

√
cδ

))
cδζ2

1−cδB
1

(c+
√

c)B

Byz-EF21 (2) 1+
√

cδ
αDε2

(cδ+
√

cδ)ζ2

1−B(cδ+
√

cδ)
1

c(B+B2)

Byz-EF21-BC (2) 1+
√

cδ
αDαP ε2

(cδ+
√

cδ)ζ2

1−B(cδ+
√

cδ)
1

c(B+B2)
(1) For Byz-VR-MARINA (2.0), p = min{1/ω, b/m}; for Byz-DASHA-PAGE p = b/m.
(2) These methods use (biased) contractive compression and compute full gradients on regular workers.

Algorithms

Byz-VR-MARINA 2.0

1: Input: starting point x0 ∈ Rd, stepsize
γ > 0, probability p ∈ (0, 1], number of
iterations T ≥ 1, unbiased compressors
{Qi}i∈G

2: for t = 0, 1, . . . , T − 1 do
3: Sample ct+1 ∼ Bernoulli(p)
4: Broadcast gt to all nodes
5: for i ∈ G in parallel do
6: xt+1 = xt − γgt

7: if ct+1 = 1 then
8: gt+1

i = ∇fi(xt+1)
9: Send ∇fi(xt+1) to the server.

10: else
11: mt+1

i = Qi(∆̂i(xt+1, xt))
12: gt+1

i = gt
i + mt+1

i

13: Send mt+1
i to the server

14: end if
15: end for
16: gt+1 = ARAgg

(
gt+1

1 , . . . , gt+1
n

)
17: end for

Byz-EF21

1: Input: starting point x0 ∈ Rd, stepsize
γ > 0, number of iterations T ≥ 1,
biased compressors {Ci}i∈G

2: for t = 0, 1, . . . , T − 1 do
3: xt+1 = xt − γgt

4: Broadcast xt+1 to all workers
5: for i ∈ G in parallel do

6: ct
i = Ci(∇fi(xt+1) − gt

i)
7: gt+1

i = gt
i + ct

i

8: Send message ct
i to the server

9: end for
10: gt+1 = ARAgg(gt+1

1 , . . . , gt+1
n )

11: end for

Byz-DASHA-PAGE

1: Input: starting point x0 ∈ Rd, stepsize
γ > 0, momentum a ∈ (0, 1], proba-
bility p ∈ (0, 1], number of iterations
T ≥ 1, unbiased compressors {Qi}i∈G

2: for t = 0, 1, . . . , T − 1 do
3: Sample ct+1 ∼ Bernoulli(p)
4: Broadcast gt to all nodes
5: for i ∈ G in parallel do
6: xt+1 = xt − γgt

7: if ct+1 = 1 then
8: ht+1

i = ∇fi(xt+1)
9: else

10: ht+1
i = ht

i + ∆̂i(xt+1, xt)
11: end if
12: mt+1

i = Qi(ht+1
i −ht

i−a(gt
i−ht

i))
13: gt+1

i = gt
i + mt+1

i

14: Send mt+1
i to the server

15: end for
16: gt+1 = ARAgg(gt+1

1 , . . . , gt+1
n )

17: end for

Byz-EF21-BC

1: Input: starting point x0 ∈ Rd, stepsize
γ > 0, number of iterations T ≥ 1,
biased compressors {CD

i }i∈G, CP

2: for t = 0, 1, . . . , T − 1 do
3: xt+1 = xt − γgt

4: st+1 = CP (xt+1 − wt)
5: wt+1 = wt + st+1

6: Broadcast st+1 to all workers
7: for i ∈ G in parallel do
8: wt+1 = wt + st+1

9: ct
i = CD

i (∇fi(wt+1) − gt
i)

10: gt+1
i = gt

i + ct
i

11: Send message ct
i to the server

12: end for
13: gt+1 = ARAgg(gt+1

1 , . . . , gt+1
n )

14: end for

Robust Aggregation

(δ, c)-Robust Aggregator [2]

Assume that {x1, . . . , xn} is such that there ex-
ists a subset G ⊆ [n] of size |G| = G ≥
(1 − δ)n with δ < 0.5, and σ ≥ 0 such
that 1

G(G−1)
∑

i,l∈G E [∥xi − xl∥2] ≤ σ2. Then
x̂ is a (δ, c)-Robust Aggregator (x̂ =
RAgg(x1, . . . , xn)) if

E
[
∥x̂ − x∥2] ≤ cδσ2

for some c > 0, where x = 1
|G|

∑
i∈G xi. If addi-

tionally x̂ is computed without the knowledge of σ2,
then x̂ is a (δ, c)-Agnostic Robust Aggregator
((δ, c)-ARAgg) (x̂ = ARAgg(x1, . . . , xn)).

Examples:
[CM(x1, . . . , xn)]j := Median([x1]j, . . . , [xn]j)

GM(x1, . . . , xn) := arg min
x∈Rd

n∑
i=1

∥x − xi∥

Krum(x1, . . . , xn) := arg min
xi∈{x1,...,xn}

∑
j∈Si

∥xj − xi∥2

+ Bucketing [3]

1: Input: {x1, . . . , xn}, bucket size s ∈ N, aggregation rule Aggr
2: Sample a random permutation π = (π(1), . . . , π(n)) of [n]
3: Set yi = 1

s

∑min{si,n}
k=s(i−1)+1 xπ(k) for i = 1, . . . , ⌈n/s⌉

4: Return: x̂ = Aggr(y1, . . . , y⌈n/s⌉)

Variance reduction = less space to hide in the noise

Experiments

Figure: Logistic regression problem with non-convex
regularizer in the homogeneous setting.

Figure: Logistic regression problem with non-convex
regularizer in the heterogeneous setting.

⋄ Bit Flipping (BF): flip the sign of the updates.
⋄ Label Flipping (LF): change labels: yi,j 7→ −yi,j.
⋄ A Little Is Enough (ALIE): estimate the mean
µG and standard deviation σG of the regular updates and
send µG − zσG.
⋄ Inner Product Manipulation (IPM): send
− z

G

∑
i∈G ∇fi(x).
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