Communication Compression for Byzantine Robust Learning: New Efficient Algorithms and Improved Rates

Ahmad Rammal ^{1, 2} Kaja Gruntkowska ¹ Nikita Fedin ³ Eduard Gorbunov ⁴ Peter Richtárik ¹ ¹KAUST ²École Polytechnique ³MIPT ⁴MBZUAI

The Problem

Nonconvex *distributed* optimization problem:

• • •

Main contributions

♦ Improved complexity bounds: Two new Byzantine-robust methods with *unbiased* compression: Byz-VR-MARINA 2.0 and Byz-DASHA-PAGE, outperforming the previous SOTA Byz-VR-MARINA by factors of $\sqrt{\max\{\omega, m/b\}}$ and $\sqrt{\max\{\omega^3, m^2\omega/b^2\}}$ in the leading term. ♦ Smaller size of the neighborhood: Byz-VR-MARINA 2.0 and Byz-DASHA-PAGE converge to a smaller neighborhood of the solution than their competitors. When B = 0, we prove that $\mathbb{E}[\|\nabla f(x)\|^2] = \mathcal{O}(c\delta)$, matching the lower bound [3] and improving on $\mathbb{E}[\|\nabla f(x)\|^2] = \mathcal{O}(c\delta/p)$ of Byz-VR-MARINA.

♦ Higher tolerance to Byzantine workers: When B > 0, our results guarantee convergence in the presence of 1/p times more Byzantine workers than in the case of Byz-VR-MARINA.

Robust Aggregation

 (δ, c) -Robust Aggregator [2]

Assume that $\{x_1, \ldots, x_n\}$ is such that there exists a subset $\mathcal{G} \subseteq [n]$ of size $|\mathcal{G}| = G \geq (1 - \delta)n$ with $\delta < 0.5$, and $\sigma \geq 0$ such that $\frac{1}{G(G-1)} \sum_{i,l \in \mathcal{G}} \mathbb{E}[||x_i - x_l||^2] \leq \sigma^2$. Then \widehat{x} is a (δ, c) -Robust Aggregator $(\widehat{x} = \operatorname{RAgg}(x_1, \ldots, x_n))$ if

 $\mathbb{E}\left[\|\widehat{x} - \overline{x}\|^2\right] \le c\delta\sigma^2$

- \mathcal{G} is the set of good/regular/non-Byzantine clients, $|\mathcal{G}| = G$
- \mathcal{B} is the set of bad/malicious/Byzantine clients
- $\mathcal{G} \sqcup \mathcal{B} = [n]$, where *n* is the total number of clients
- $f_i(x)$ loss of the model x on the data stored on worker i
- $f_{i,j}(x)$ loss on the *j*-th example from the local dataset of worker *i*

Goal: find \hat{x} such that $\mathbb{E}\left[\|\nabla f(\hat{x})\|^2\right] \leq \varepsilon^2$

Compressed learning

Unbiased compressor

 ♦ The first Byzantine-robust methods with EF: Two new Byzantine-robust methods employing any contractive compressors – Byz-EF21 and Byz-EF21-BC. Additionally, Byz-EF21-BC is the first provably Byzantine-robust algorithm using bidirectional compression.

Table: Summary of the complexity bounds in the general non-convex case. Columns: "Rounds" = the number of communication rounds required to find x such that $\mathbb{E}[\|\nabla f(x)\|^2] \leq \varepsilon^2$; " $\varepsilon \leq$ " = the lower bound for the best achievable accuracy ε ; " $\delta <$ " = the maximal ratio of Byzantine workers that the method can provably tolerate.

Method	Rounds	$\varepsilon \leq$	$\delta <$
Byz-VR-MARINA ⁽¹⁾	$\frac{1}{\varepsilon^2} \left(1 + \sqrt{\max\{\omega^2, \frac{m\omega}{b}\}} \left(\sqrt{\frac{1}{G}} + \sqrt{c\delta \max\{\omega, \frac{m}{b}\}} \right) \right)$	$\frac{c\delta\zeta^2}{n-c\delta B}$	$\frac{p}{cB}$
[2]			
Byz-VR-MARINA 2.0 ⁽¹⁾	$\frac{1}{\varepsilon^2} \left(1 + \sqrt{\max\{\omega^2, \frac{m\omega}{b}\}} \left(\sqrt{\frac{1}{G}} + \sqrt{c\delta} \right) \right)$	$\frac{c\delta\zeta^2}{1\!-\!c\delta B}$	$\frac{1}{(c+\sqrt{c})B}$
Byz-DASHA-PAGE ⁽¹⁾	$\frac{1}{\varepsilon^2} \left(1 + \left(\omega + \frac{\sqrt{m}}{b} \right) \left(\sqrt{\frac{1}{G}} + \sqrt{c\delta} \right) \right)$	$\frac{c\delta\zeta^2}{1\!-\!c\delta B}$	$\frac{1}{(c+\sqrt{c})B}$
$B_{V7} = FF21$ (2)	$1 + \sqrt{c\delta}$	$(c\delta + \sqrt{c\delta})\zeta^2$	1
Dyz-LIZI	$lpha_Darepsilon^2$	$1 - B(c\delta + \sqrt{c\delta})$	$c(B+B^2)$
Byz-EF21-BC ⁽²⁾	$\frac{1+\sqrt{c\delta}}{\alpha_{D}\alpha_{D}\varepsilon^{2}}$	$\frac{(c\delta + \sqrt{c\delta})\zeta^2}{1 - B(c\delta + \sqrt{c\delta})}$	$\frac{1}{c(B+B^2)}$
	apape	$1 - D(co + \sqrt{co})$	U(D+D)

(1) For Byz-VR-MARINA (2.0), $p = \min\{1/\omega, b/m\}$; for Byz-DASHA-PAGE p = b/m.

⁽²⁾ These methods use (biased) contractive compression and compute full gradients on regular workers.

Algorithms

for some c > 0, where $\overline{x} = \frac{1}{|\mathcal{G}|} \sum_{i \in \mathcal{G}} x_i$. If additionally \widehat{x} is computed without the knowledge of σ^2 , then \widehat{x} is a (δ, c) -Agnostic Robust Aggregator $((\delta, c)$ -ARAgg) $(\widehat{x} = \operatorname{ARAgg}(x_1, \ldots, x_n)).$

Examples:

$$\begin{split} [\texttt{CM}(x_1, \dots, x_n)]_j &:= \texttt{Median}([x_1]_j, \dots, [x_n]_j) \\ \texttt{GM}(x_1, \dots, x_n) &:= \arg\min_{x \in \mathbb{R}^d} \sum_{i=1}^n ||x - x_i|| \\ \texttt{Krum}(x_1, \dots, x_n) &:= \arg\min_{x_i \in \{x_1, \dots, x_n\}} \sum_{j \in S_i} ||x_j - x_i||^2 \\ &+ \texttt{Bucketing [3]} \end{split}$$

1: Input: $\{x_1, \ldots, x_n\}$, bucket size $s \in \mathbb{N}$, aggregation rule Aggr 2: Sample a random permutation $\pi = (\pi(1), \ldots, \pi(n))$ of [n]3: Set $y_i = \frac{1}{s} \sum_{k=s(i-1)+1}^{\min\{si,n\}} x_{\pi(k)}$ for $i = 1, \ldots, \lceil n/s \rceil$ 4: Return: $\hat{x} = \operatorname{Aggr}(y_1, \ldots, y_{\lceil n/s \rceil})$

$$\mathbb{E}\left[\mathcal{Q}(x)\right] = x, \ \mathbb{E}\left[\|\mathcal{Q}(x)\|^2\right] \le \omega \|x\|^2$$

Example: Rand- $K \in \mathbb{U}(d/K)$:

$$\mathcal{Q}(x) := \frac{d}{K} \sum_{i \in S} x_i e_i$$

Contractive compressor $\mathbb{E}\left[\|\mathcal{C}(x) - x\|^2\right] \le (1 - \alpha)\|x\|^2$

Example: Top- $K \in \mathbb{B}(K/d)$:

$$\mathcal{C}(x) := \sum_{i=d-K+1}^d x_{(i)} e_{(i)}$$

Assumptions

L-smoothness: The function $f : \mathbb{R}^d \to \mathbb{R}$ is *L*-smooth, i.e.,

 $\begin{aligned} \|\nabla f(x) - \nabla f(y)\| &\leq L \|x - y\| \\ \text{for any } x, y \in \mathbb{R}^d. \quad \text{Moreover, } f_* &= \\ \inf_{x \in \mathbb{R}^d} f(x) > -\infty. \end{aligned}$

Global Hessian variance [1]: There exists

$$L_{\pm} \geq 0$$
 such that for all $x, y \in \mathbb{R}^d$
 $\frac{1}{G} \sum_{i \in \mathcal{G}} \|\nabla f_i(x) - \nabla f_i(y)\|^2 - \|\nabla f(x) - \nabla f(y)\|^2$
 $\leq L_{\pm}^2 \|x - y\|^2.$

Local Hessian variance [2]: There exists $\mathcal{L}_{\pm} \geq 0$ such that for all $x, y \in \mathbb{R}^d$ the unbiased mini-batched estimator $\widehat{\Delta}_i(x, y)$ of $\Delta_i(x, y) = \nabla f_i(x) - \nabla f_i(y)$ with batch size *b* satisfies

$$\frac{1}{G}\sum_{i\in\mathcal{G}}\mathbb{E}\left[\|\widehat{\Delta}_i(x,y) - \Delta_i(x,y)\|^2\right] \leq \frac{\mathcal{L}_{\pm}^2}{b}\|x - y\|^2.$$

 $(B, \zeta^2)\text{-heterogeneity} \quad [2]: \text{ There exist} \\ B, \zeta \ge 0 \text{ such that for all } x \in \mathbb{R}^d \\ \frac{1}{G} \sum_{i \in \mathcal{G}} \|\nabla f_i(x) - \nabla f(x)\|^2 \le B \|\nabla f(x)\|^2 + \zeta^2.$

- $\gamma > 0$, number of iterations $T \ge 1$, biased compressors $\{C_i\}_{i\in\mathcal{G}}$ 2: for $t = 0, 1, \dots, T - 1$ do 3: $x^{t+1} = x^t - \gamma g^t$
- 4: Broadcast x^{t+1} to all workers 5: for $i \in \mathcal{G}$ in parallel do
- 6: $c_i^t = C_i(\nabla f_i(x^{t+1}) g_i^t)$ 7: $g_i^{t+1} = g_i^t + c_i^t$ 8: Send message c_i^t to the server 9: **end for** 10: $g^{t+1} = \operatorname{ARAgg}(g_1^{t+1}, \dots, g_n^{t+1})$ 11: **end for**
- $\gamma > 0$, number of iterations $T \ge 1$, biased compressors $\{\mathcal{C}_i^D\}_{i\in\mathcal{G}}, \mathcal{C}^P$ 2: for $t = 0, 1, \ldots, T - 1$ do $x^{t+1} = x^t - \gamma q^t$ 3: $s^{t+1} = \mathcal{C}^P \left(x^{t+1} - w^t \right)$ 4: $w^{t+1} = w^t + s^{t+1}$ 5: Broadcast s^{t+1} to all workers for $i \in \mathcal{G}$ in parallel do 7: $w^{t+1} = w^t + s^{t+1}$ 8: $c_i^t = \mathcal{C}_i^D(\nabla f_i(w^{t+1}) - g_i^t)$ 9: $q_i^{t+1} = q_i^t + c_i^t$ 10: Send message c_i^t to the server 11: end for 12: $g^{t+1} = \mathsf{ARAgg}(g_1^{t+1}, \dots, g_n^{t+1})$ 13: 14: **end for**

regularizer in the heterogeneous setting.

◇ Bit Flipping (BF): flip the sign of the updates.
◇ Label Flipping (LF): change labels: y_{i,j} → -y_{i,j}.
◇ A Little Is Enough (ALIE): estimate the mean μ_G and standard deviation σ_G of the regular updates and send μ_G - zσ_G.

♦ Inner Product Manipulation (IPM): send $-\frac{z}{G}\sum_{i\in\mathcal{G}}\nabla f_i(x).$

References

[1] R. Szlendak, A. Tyurin, and P. Richtárik. Permutation compressors for provably faster distributed nonconvex optimization. arXiv preprint arXiv:2110.03300, 2021.

- [2] E. Gorbunov, S. Horváth, P. Richtárik, and G. Gidel. Variance reduction is an antidote to byzantines: Better rates, weaker assumptions and communication compression as a cherry on the top. *International Conference on Learning Representations*, 2023.
- [3] S. P. Karimireddy, L. He, and M. Jaggi. Byzantine-robust learning on heterogeneous datasets via bucketing. *International Conference on Learning Representations*, 2022.

