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Introduction and Background

The framework of Reinforcement Learning (RL) has a wide array of applications: from

epidemic control to transportation to wireless communication.

An agent aims to learn the best ’policy’ by repeatedly interacting with an environment.

Environment consists of a state that changes following an unknown probability law when the

agent executes an action.

The agent immediately receives a reward value as feedback.

The goal is to maximize the discounted sum of rewards over an infinite horizon.

We consider general parameterization where policies are indexed by some d dimensional

parameter, θ (e.g., the weights of a neural network). It allows infinite state space.

The number of state transition samples needed by a learning algorithm to reach within ε
distance of optimality is known as its sample complexity.

The number of times it updates the policy parameters is known as its iteration complexity.

Research Gap

Algorithm Sample Complexity Iteration Complexity Hessian-free IS-free

Vanilla-PG [6] Õ(ε−3) O(ε−3) Yes Yes

STORM-PG-F [1] Õ(ε−3) O(ε−3) Yes No

SCRN [5] Õ(ε−2.5) O(ε−0.5) No Yes

VR-SCRN [5] O(ε−2 log
(1

ε

)
) O(ε−0.5) No No

NPG [4] O(ε−3) O(ε−1) Yes Yes

SRVR-NPG [4] O(ε−3) O(ε−1) Yes No

SRVR-PG [4] O(ε−3) O(ε−2) Yes No

N-PG-IGT [2] Õ(ε−2.5) O(ε−2.5) Yes Yes

HARPG [2] O(ε−2 log
(1

ε

)
) O(ε−2) No Yes

Table 1. Sample and iteration complexities of the existing algorithms for general parameterization.

As seen from the above table, many existing algorithms use either importance sampling (IS),

which requires unreasonable assumptions for the analysis, or second-order (Hessian-related)

information, which demands larger memory than first-order algorithms.

The best known sample complexity is O(ε−2 log
(1

ε

)
) while the lower bound is O(ε−2).

Two algorithms achieve the best-known sample complexity: VR-SCRN and HARPG.

The first one is neither first-order nor IS-free.

The second one has rather large iteration complexity and is Hessian-based.

Research Question

Does there exist an IS-free and Hessian-free algorithm that either achieves or improves the

SOTAO(ε−2 log
(1

ε

)
) sample complexity?

Our Contributions

We propose an accelerated natural policy gradient (ANPG) algorithm.

The proposed algorithm is Hessian-free and IS-free.

Its sample complexity is O(ε−2) which improves the SOTA by a factor of O(log
(1

ε

)
).

Its iteration complexity is O(ε−1) which beats that of HARPG by a factor of O(ε−1).

Algorithm Design: Key Ideas

The goal of the algorithm is to maximize the value function defined below.

Jρ(θ) = E

[ ∞∑
t=0

γtr(st, at)
∣∣s0 ∼ ρ, πθ

]
where the symbols carry their usual meanings. An NPG update is the following.

θk+1 = θk + ηFρ(θk)†∇θJρ(θk)
where η is the learning rate. Note that the update is similar to a PG update except η is modulated

by the Moore-Penrose inverse of the Fisher information matrix defined as,

Fρ(θ) , E(s,a)∼ν
πθ
ρ

[
∇θ log πθ(a|s)⊗∇θ log πθ(a|s)

]
where ν

πθ
ρ is the occupation measure and ⊗ is the outer product. One can show that,

ω∗k , Fρ(θk)†∇θJρ(θk) ∈ arg minω∈RdLν
πθ
ρ

(ω, θ) , 1
2
E(s,a)∼ν

πθ
ρ

[
1

1− γ
Aπθ(s, a)− ωT∇θ log πθ(a|s)

]2

Thus, the natural gradient ω∗k can be obtained by iteratively applying gradient descent to L
ν

πθ
ρ

(·, θ).
In this paper, we use momentum-based accelerated gradient descent to estimate ω∗k. Note that,

∇ωL
ν

πθ
ρ

(ω, θ) = Fρ(θ)ω − 1
1− γ

Hρ(θ), where Hρ(θ) , E(s,a)∼ν
πθ
ρ

[
Aπθ(s, a)∇θ log πθ(a|s)

]
Since the transition probability and therefore, ν

πθ
ρ and Aπθ(·, ·) are unknown, we obtain sample-

based unbiased estimates ofFρ(θ) andHρ(θ) (Algorithm 1 in the paper) which leads to an unbiased

estimate ∇̂ωL
ν

πθ
ρ

(ω, θ).

Psuedo-Code

For k ∈ {0, · · · , K− 1} . Outer Loop

x0, v0← 0

For h ∈ {0, · · · , H−1} . Inner Loop: AcceleratedGradient Descent

yh← αxh + (1− α)vh (1)

xh+1← yh − δ∇̂ωL
ν

πθ
ρ

(ω, θk)
∣∣
ω=yh

(2)

zh← βyh + (1− β)vh (3)

vh+1← zh − ξ∇̂ωL
ν

πθ
ρ

(ω, θk)
∣∣
ω=yh

(4)

ωk ←
2
H

∑
H
2 <h≤H

xh . Tail Averaging

θk+1← θk+ηωk . Policy Parameter Update

α, β, δ, ξ are appropriately chosen learning parameters.

Some Important Lemmas: Key Proof Ideas

It can be shown (Corollary 1 in the paper) that the global optimality error can be bounded by the

natural gradient estimation error in the inner loop as follows for certain parameter choices.

J∗ρ −
1
K

K−1∑
k=0

E[Jρ(θk)] ≤ √εbias + G

K

K−1∑
k=0

E‖(E [ωk|θk]− ω∗k)‖

+ B

4L

(
µ2

F

G2 + G2
) 1

K

K−1∑
k=0

E‖ωk − ω∗k‖
2

 + G2

µ2
F K

(
B

1− γ
+ 4LE

s∼dπ∗
ρ

[KL(π∗(·|s)‖πθ0(·|s))]
)

where B, L, G, µF are appropriately defined constants and εbias denotes the expressivity power

of the policy parameterization. This result is similar to the result given in [4] except here the first

order term is modified to E‖E[ωk|θk]− ω∗k‖. Following [3], we can show that,

E‖ωk − ω∗k‖
2 ≤ 22 σ2d

µF H
+ C exp

(
− µF

20G2H
)[ 1

µF (1− γ)4

]
= O

(
1
H

)
(5)

where H is sufficiently large and the appropriately defined constant σ2 denotes the (scaled) vari-
ance of the gradient estimate ∇̂ωL

ν
πθ
ρ

(ω∗θ , θ), ω∗θ being the exact minimizer of L
ν

πθ
ρ

(·, θ). To bound

the first-order term, observe that if x̄h , E [xh|θk], ȳh , E [yh|θk], v̄h , E [vh|θk], z̄h , E [zh|θk],
∀h ∈ {0, · · · , H}, then it follows from (1)− (4) and the unbiasedness of the gradient estimate that,

x̄0 = 0, v̄0 = 0 (6)

ȳh = αx̄h + (1− α)v̄h (7)

x̄h+1 = ȳh − δ∇ωL
ν

πθ
ρ

(ω, θk)
∣∣
ω=ȳh

(8)

z̄h = βȳh + (1− β)v̄h (9)

v̄h+1 = z̄h − ξ∇ωL
ν

πθ
ρ

(ω, θk)
∣∣
ω=ȳh

(10)

Note that E[ωk|θk] = 2
H

∑
H
2 <h≤H

x̄h. Therefore, E[ωk|θk] can be thought of as an estimate of ω∗k
when exact gradients ∇ωL

ν
πθ
ρ

(ω, θ) are available (no noise or deterministic scenario). We have,

E‖(E[ωk|θk]− ω∗k)‖ ≤
√

C exp
(
− µF

40G2H
)( 1
√

µF (1− γ)2

)
= O

(
1
H

)
(11)

Using (5) and (11), the global error can be bounded as
√

εbias +O
( 1

H + 1
K

)
. To make the second

term ε, we have to take H = O(ε−1) and K = O(ε−1). This results in O(ε−2) sample complexity

and O(ε−1) iteration complexity.

Remark: Note the importance of the first-order term. Without our modification, this term will

be E‖ωk − ω∗k‖ (as in [4]) which would lead to a global optimality error of
√

εbias +O
(

1√
H

+ 1
K

)
leading to a sample complexity of O(ε−3).
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