

Background and Motivations

Marginal Likelihood Maximization

For a model with latent variables the empirical Bayes paradigm infers parameters by solving the maximum marginal likelihood problem :

$$\operatorname{argmax}_{\theta\in\Theta} I(\theta), \quad I(\theta) \triangleq \log\left(\int_{\mathcal{Z}} p(y, z|\theta) dz\right)$$

where $z \in \mathcal{Z} \subset \mathbb{R}^{d_z}$ are latent variables, $y \in \mathcal{Y} \subset \mathbb{R}^{d_y}$ are observations, and $\theta \in \Theta \subseteq \mathbb{R}^{d_{\theta}}$ are model parameters.

ULA

The ULA Markov chain $(X_k)_{k>0}$ is derived from the EulerMaruyama discretization scheme associated with the Langevin diffusion related to the force $U \triangleq -\nabla \log(\pi)$ if π is the target distribution, at iteration $k \ge 0$

$$X_{k+1} = X_k - \eta_{k+1} \nabla U(X_k) + \sqrt{2\eta_{k+1}} Z_{k+1}$$

MALA

Metropolis-Hastings-adjusted Langevin (MALA) is the asymptotically unbiased counterpart of ULA by applying a Metropolis-Hasting accept-reject step.

Stochastic Approximation with Biased MCMC for Expectation Maximization

Samuel Gruffaz^{1,2}, Kyurae Kim³, Jacob R. Gardner³ and Alain Durmus⁴

¹Université Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli, F-91190, Gif-sur-Yvette, France ²Université de Paris, CNRS, Centre Borelli, F-75005 Paris, France ³University of Pennsylvania, Philadelphia, United States ⁴CMAP, CNRS, École Polytechnique

Contribution

We show that, for **maximum marginal likelihood** inference of **high** dimensional latent variable models, using asymptotically biased MCMC methods in **SAEM** is **more effective**.

Why? According to [Durmus and Moulines(2017)], in finite time and high **dimension** :

Sampling bias(ULA) \ll Sampling bias(MALA)

Methodology

Jensen trick and the ELBO Denoting by $D_{\mathcal{Z}} \triangleq \{f \in L^1(\mathcal{Z}) : f \ge 0, \int_{\mathcal{Z}} f \, dz = 1\}$, let $q \in D_{\mathcal{Z}}$, for any $\theta \in \Theta$, $-\log p(y|\theta) \leq -\mathbb{E}_{Z \sim q}(\log(p(y, Z|\theta))) + \mathbb{E}_{Z \sim q}(\log q(Z)) = -\mathsf{ELBO}(\theta, q).$

The function $q \in D_{\mathcal{Z}} \mapsto \mathsf{ELBO}(\theta, q)$ is minimized by $q^*(z) \triangleq p(z|y, \theta)$ such that $ELBO(\theta, q^*) = -I(\theta)$. Thus, by considering $\theta^* = \operatorname{argmin}_{\theta' \in \Theta} ELBO(\theta', q^*)$, we have $I(\theta^*) \leq I(\theta)$. This procedure offers a recipe to construct a maximizing sequence of *I*.

H1

For any $y \in \mathcal{Y}, z \in \mathcal{Z}$ and $\theta \in \Theta$,

 $p(y, z|\theta) = h(y, z) \exp(S(y, z)^{\top} \phi(\theta) - \psi(\theta)),$ Denoting by $L(s, \theta) \triangleq s \cdot \phi(\theta) - \psi(\theta)$, we define for any $s \in \mathbb{R}^d$, $\hat{\theta}(s) = \operatorname{argmax}_{\theta \in \Theta} L(s, \cdot)$. All functions are smooths.

Under **H1**, denoting by $\overline{s}(\theta) = \mathbb{E}_{Z \sim p(z|y,\theta)}(S(y,Z))$, we have, $\operatorname{argmin}_{\theta' \in \Theta} \operatorname{ELBO}(\theta', q^*) = \hat{\theta} \circ \overline{s}(\theta).$

EM algorithm

Under H1, the EM algorithm is defined as follows : Let $(s_k)_{k\geq 0}, (\theta_k)_{k\geq 0}$ be initialized from $\theta_0 \in \Theta$ and follow the recursion for any $k \ge 0$: **Expectation** : Set $s_k = \overline{s}(\theta_k)$.

Maximization : Set $\theta_{k+1} = \hat{\theta}(s_k)$, which implies $I(\theta_{k+1}) \ge I(\theta_k)$.

SAEM with biased MCMC

For any $s \in \mathbb{R}^d$ and $\eta \in (0, \eta_0]$, the Markov kernel Π_s^{η} has a single stationary distribution $\pi_{\hat{\theta}(s),n}$, also denoted as π_s^{η} , such that $\pi_{s,\eta}\Pi_s^{\eta} = \pi_{s,\eta}$. Let $(\gamma_n)_n$, $(\eta_n)_n$ be two monotone nonincreasing sequences and for any $n \ge 0$, define the recursion,

$$Z_{n+1} \sim \prod_{s_n}^{\eta_{n+1}} (Z_n, \cdot), \quad s_{n+1} = s_n + \gamma_{n+1} (S(y, Z_{n+1}) - s_n).$$

H2

Denoting the bias at step *n* by β_r $\lim \sup_n |\beta_n| = \beta < \infty.$

Asymptotic Theorem

there exists a.e K_Q s.t

on A_Q where q = (p - d)/(p - 1)

Non Asymptotic Theorem

Under **H1-2** quite heavy assumptions often used in the litterature, denoting by $B(\beta) \propto \sqrt{\beta}/(\text{cst} - \sqrt{\beta})$ the bias constant, with probability $1 - \delta$ we have, $\min_{i=1,\dots,n} |h(s_i)|^2 \leq O(\log(n/\delta)/\sqrt{n} + B(\beta)).$

Experiments

The model is described as :

$$eta_0 \sim \mathcal{N}\left(0, 10
ight) \quad eta \sim \mathcal{N}\left(0, \gamma^{-1}
ight), \quad p_i = \mathsf{logistic}\left(eta^ op x_i + eta_0
ight), \quad y_i \sim \mathsf{Bernoulli}\left(p_i
ight),$$

where $\gamma = (\gamma_1, \gamma_2, \dots, \gamma_d) \in \mathbb{R}^d_{>0}$ is the parameter to optimize with MCMC-SAEM using MALA or ULA. We report the average log-predictive density (LPD) on 32 independant train-test split.

Bibliography

Alain Durmus and Eric Moulines. Annals of Applied Probability, 27(3) :1551–1587, 2017.

$$f_n = \mathbb{E}_{Z \sim \pi_{\eta_{n+1}, s_n}}(S(y, Z)) - \mathbb{E}_{Z \sim p(\cdot | \hat{\theta}(s_n), y}(S(y, Z)))$$
, we have a.e

Under H1-2 and other technical conditions, on the event $A_Q = ((s_n)$ belongs to a compact Q),

$$\limsup_{n \to \infty} |
abla V(s_n)| \leq K_Q \beta^{q/2}$$

) if V is C^p .

Logistic Regression with Automatic Relevance Determination.

Nonasymptotic convergence analysis for the unadjusted Langevin algorithm.

Contact : samuel.gruffaz@ens-paris-saclay.fr