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Background and Motivations
Marginal Likelihood Maximization
For a model with latent variables the empirical Bayes paradigm infers parameters
by solving the maximum marginal likelihood problem :

argmaxθ∈Θ l(θ), l(θ) , log

(∫
Z

p(y , z |θ)dz
)

where z ∈ Z ⊂ Rdz are latent variables, y ∈ Y ⊂ Rdy are observations, and
θ ∈ Θ ⊆ Rdθ are model parameters.

ULA
The ULA Markov chain (Xk)k≥0 is derived from the EulerMaruyama
discretization scheme associated with the Langevin diffusion related to the force
U , −∇ log(π) if π is the target distribution, at iteration k ≥ 0

Xk+1 = Xk − ηk+1∇U(Xk) +
√

2ηk+1Zk+1

MALA
Metropolis-Hastings-adjusted Langevin (MALA) is the asymptotically unbiased
counterpart of ULA by applying a Metropolis-Hasting accept-reject step.

Contribution
We show that, for maximum marginal likelihood inference of high
dimensional latent variable models, using asymptotically biased MCMC
methods in SAEM is more effective.
Why ? According to [Durmus and Moulines(2017)], in finite time and high
dimension :

Sampling bias(ULA) � Sampling bias(MALA)

Methodology
Jensen trick and the ELBO
Denoting by DZ , {f ∈ L1(Z) : f ≥ 0,

∫
Z f dz = 1}, let q ∈ DZ, for any

θ ∈ Θ,
− log p(y |θ) ≤ −EZ∼q(log(p(y ,Z |θ))) + EZ∼q(log q(Z )) = −ELBO(θ, q).

The function q ∈ DZ 7→ ELBO(θ, q) is minimized by q∗(z) , p(z |y , θ) such
that ELBO(θ, q∗) = −l(θ). Thus, by considering θ∗ = argminθ′∈Θ ELBO(θ′, q∗),
we have l(θ∗) ≤ l(θ). This procedure offers a recipe to construct a maximizing
sequence of l .
H1
For any y ∈ Y , z ∈ Z and θ ∈ Θ,

p(y , z |θ) = h(y , z) exp(S(y , z)>φ(θ)− ψ(θ)),

Denoting by L(s, θ) , s · φ(θ)− ψ(θ), we define for any s ∈ Rd ,
θ̂(s) = argmaxθ∈Θ L(s, ·). All functions are smooths.

Under H1, denoting by s̄(θ) = EZ∼p(z |y ,θ) (S(y ,Z )), we have,
argminθ′∈Θ ELBO(θ′, q∗) = θ̂ ◦ s̄(θ).
EM algorithm
Under H1 , the EM algorithm is defined as follows : Let (sk)k≥0, (θk)k≥0 be
initialized from θ0 ∈ Θ and follow the recursion for any k ≥ 0 :

1. Expectation : Set sk = s̄(θk).
2. Maximization : Set θk+1 = θ̂(sk), which implies l(θk+1) ≥ l(θk).

SAEM with biased MCMC
For any s ∈ Rd and η ∈ (0, η0], the Markov kernel Πηs has a single stationary
distribution πθ̂(s),η , also denoted as πηs , such that πs,ηΠ

η
s = πs,η.

Let (γn)n, (ηn)n be two monotone nonincreasing sequences and for any n ≥ 0,
define the recursion,

Zn+1 ∼ Πηn+1
sn (Zn, ·), sn+1 = sn + γn+1(S(y ,Zn+1)− sn).

H2
Denoting the bias at step n by βn = EZ∼πηn+1,sn

(S(y ,Z ))− EZ∼p(·|θ̂(sn),y(S(y ,Z )), we have a.e
lim supn |βn| = β <∞.

Asymptotic Theorem
Under H1-2 and other technical conditions, on the event AQ = ((sn) belongs to a compact Q),
there exists a.e KQ s.t

lim sup
n→∞

|∇V (sn)| ≤ KQβ
q/2

on AQ where q = (p − d)/(p − 1) if V is C p.

Non Asymptotic Theorem
Under H1-2 quite heavy assumptions often used in the litterature, denoting by
B(β) ∝

√
β/(cst −

√
β) the bias constant, with probability 1 − δ we have,

min
i=1,...,n

|h(si)|2 ≤ O(log(n/δ)/
√

n + B(β)).

Experiments
Logistic Regression with Automatic Relevance Determination.
The model is described as :

β0 ∼ N (0, 10) β ∼ N
(
0, γ−1) , pi = logistic

(
β>xi + β0

)
, yi ∼ Bernoulli (pi) ,

where γ = (γ1, γ2, . . . , γd) ∈ Rd
>0 is the parameter to optimize with MCMC-SAEM using MALA or

ULA. We report the average log-predictive density (LPD) on 32 independant train-test split.
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