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Background and Motivations

Marginal Likelihood Maximization

For a model with latent variables the empirical Bayes paradigm infers parameters
by solving the maximum marginal likelihood problem :

orgmarsco 16), 1(6) 2 log ( [ ply.210)z )

where z € Z C R% are latent variables, ye)ycC R% are observations, and
€ © C R% are model parameters.

The integral is not tractable contrary to the expectation E,_, .\, 5(5(£))

EM (1977)
Ezo(.1y.0(S(Z)) is not tractable,,

a but we can sample p( - |y,0) = =, SAEM (1999)
MCMC-SAEM l
o (2004) We can’t sample, but we

argmaxy.q log ( J p(y,z| Q)dz) ——-
®

have a Markov chain I, s.t
l lim ||TIy(z, - )* = 7| lgyy = O
n—00

SAEM with We have a Markov chain Hg s.t

biased lim | |TT(z, - )™ = 7,9l lyy = 0

n— o0

MCMC (2024) |and ||z, ,— 7| Iy = fn) > 0.

ULA
The ULA Markov chain (Xk)x>g is derived from the EulerMaruyama

discretization scheme associated with the Langevin diffusion related to the force
U = —V log(7) if 7 is the target distribution, at iteration k > 0

Xikr1 = Xk — Nk+1V U(Xk) + \/277k+1Zk+1

MALA

Metropolis-Hastings-adjusted Langevin (MALA) is the asymptotically unbiased
counterpart of ULA by applying a Metropolis-Hasting accept-reject step.

Maximization

Samuel Gruffaz!?, Kyurae Kim3 Jacob R. Gardner® and Alain Durmus®

LUniversité Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli, F-91190, Gif-sur-Yvette, France

Contribution

We show that, for maximum marginal likelihood inference of high
dimensional latent variable models, using asymptotically biased MCMC
methods in SAEM is more effective.

Why ? According to [Durmus and Moulines(2017)], in finite time and high
dimension :

Sampling bias(ULA) < Sampling bias(MALA)

Methodology

Jensen trick and the ELBO
Denoting by Dz = {f € L}(2) : f >0, [,fdz = 1}, let ¢ € Dz, for any
0 € 0O,

—log p(y|0) < —Ez-q(log(p(y, £10))) + Ez-4(log q(£)) = —ELBO(0, q).
The function g € Dz — ELBO(6, q) is minimized by g*(z) = p(z|y,8) such
that ELBO(6, g*) = —/(#). Thus, by considering 68* = argming, .o ELBO(6', g*),
we have /(6*) < [(8). This procedure offers a recipe to construct a maximizing
sequence of /.

H1
Forany y € V,z€ Z and 6 € O,

p(y. 2|0) = h(y, z) exp(S(y, 2) ' ¢(0) — ¥(0)).
Denoting by L(s, 0) = s ¢(0) — ¥(0), we define for any s € R,

0(s) = argmaxyg L(s, ). All functions are smooths.

Under H1, denoting by 5(0) = Ez_p,1y.0) (S(y, Z)), we have,
argming..g ELBO(¢', g*) = 0 o 5(6).
EM algorithm

Under H1 , the EM algorithm is defined as follows : Let (sk)x>0, (0x)k>0 be

initialized from 6y € © and follow the recursion for any kK > 0 :
1. Expectation : Set s, = §(@k).

2. Maximization : Set 0.1 = 0(s¢), which implies /(0:1) > 1(6).
SAEM with biased MCMC

For any s € R? and 1 € (0, 1], the Markov kernel M7 has a single stationary

distribution Ti(s)m also denoted as 7, such that 7, ,[17 = 7 .

Let (Vn)n (n)n be two monotone nonincreasing sequences and for any n > 0,
define the recursion,

Zni1 ~ NI Zy,-),  Spe1 = Sn + Yort(S(Y, Zns1) — sn)-
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H2

Denoting the bias at step n by 5, = Ez.., _(5(y,Z)) —
imsup, |8,| = 6 < .

£Z~p(-|9“(sn),y(5(y7 Z)), we have a.e

Asymptotic Theorem

Under H1-2 and other technical conditions, on the event Ag = ((s,) belongs to a compact Q),
there exists a.e Kg s.t

limsup [V V(s,)| < K392

n—0o0

on Ag where g =(p—d)/(p—1) if Vis CP.
Non Asymptotic Theorem

Under H1-2 quite heavy assumptions often used in the litterature, denoting by
B(5) o< v//(cst — +/[3) the bias constant, with probability 1 — § we have,

min_|h(s)|’ < O(log(n/3)/v/n + B(5))

=1,...,

Experiments

Logistic Regression with Automatic Relevance Determination.
The model is described as :

Bo~N(0,10) [ ~N (0,7_1) . p; = logistic (6Tx,- ﬁo) ., yi ~ Bernoulli (p;),

where v = (71,72, . . ., 74) € R%, is the parameter to optimize with MCMC-SAEM using MALA or
ULA. We report the average log-predictive density (LPD) on 32 independant train-test split.
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