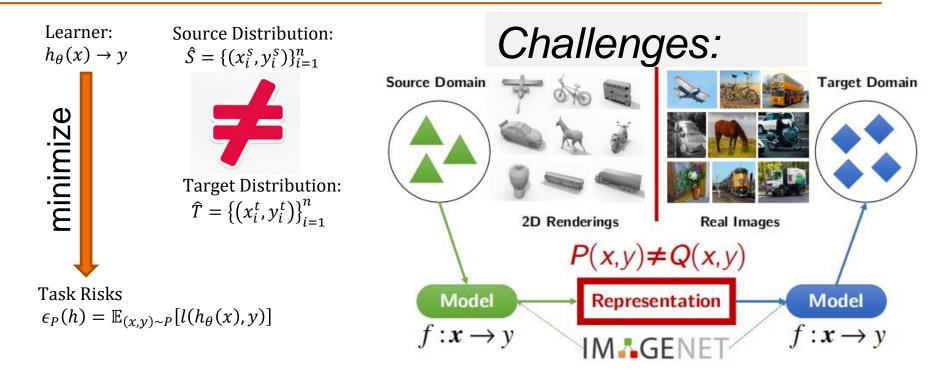
Continual Domain Adversarial Adaptation via Double-Head Discriminators

AISTATS 2024

Yan Shen, Zhanghexuan Ji, Chunwei Ma, Mingchen Gao

Background: Domain Shifts

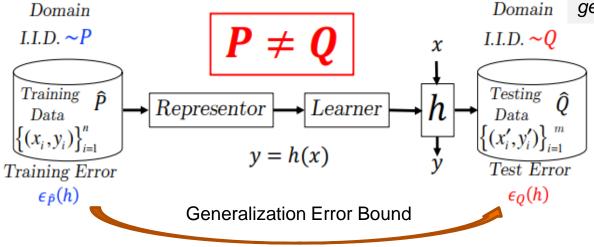


Source

- Machine Learning across domains of different distributions $P \neq Q$
- Shifted Domains are Independently and Differently Distributed

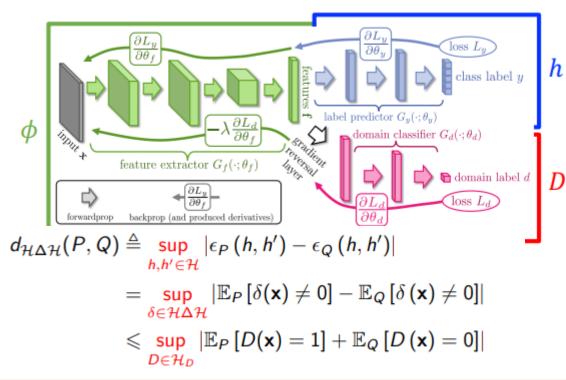
Challenges:

TargetHow to effective bound theDomaingeneralization error on target domains



Background: Existing Methods

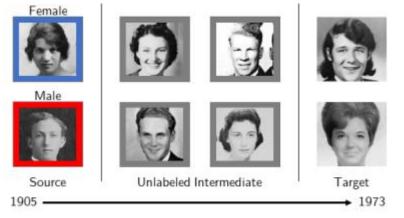
Adversarial Learning



Theorem

Let $\mathcal{F} \subseteq \mathbb{R}^{\chi \times \mathcal{Y}}$ be a hypothesis set with $\mathcal{Y} = \{1, 2 \dots k\}$ and $\mathcal{H} \subseteq \mathcal{Y}$ be the corresponding Y-valued classifier class. For every scoring function $f \in \mathcal{F}$, $err_Q(f) \leq err_P(f) + d_{\mathcal{H}\Delta\mathcal{H}}(P,Q) + \lambda$ $\lambda = \min_{f^* \in \mathcal{H}} \{err_P(f^*) + err_Q(f^*)\}$

Challenges of Continual Domain Adaptation

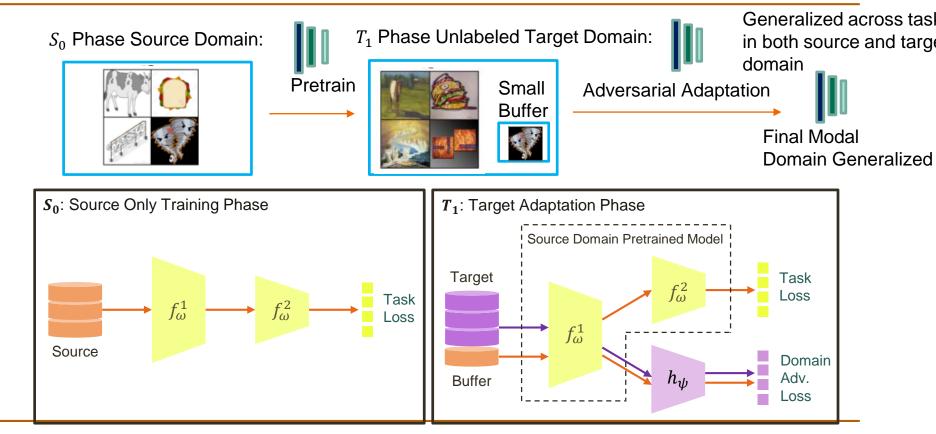


Challenges

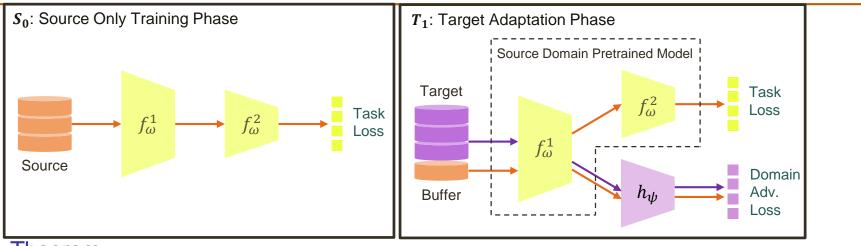
The domain data exists in an sequential form. Only online data is accessible. Sequential Learning would result catastrophic forgetting phenomenon.

- Limitations of previous research:
 - Self-supervised learning methods requires intermediate domain to be close enough
 - Unlike supervised continual learning, buffering a small set of previous samples works poorly
 - Unsupervised Learning only on current data would cause catastrophic forgetting

Our work: Problem Settings



Our work: Unique Challenge in Continual Adv Adaptation

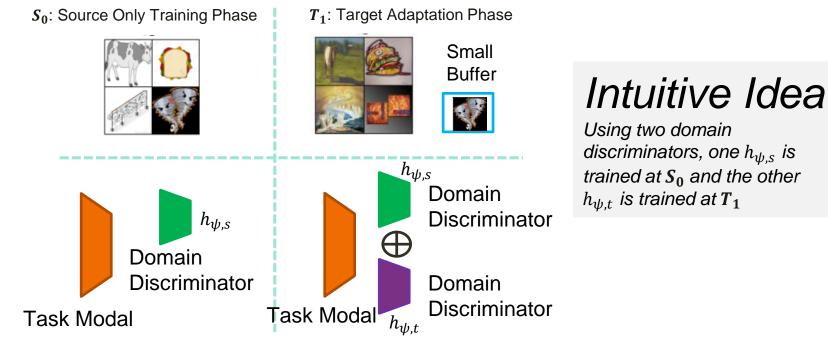


Theorem

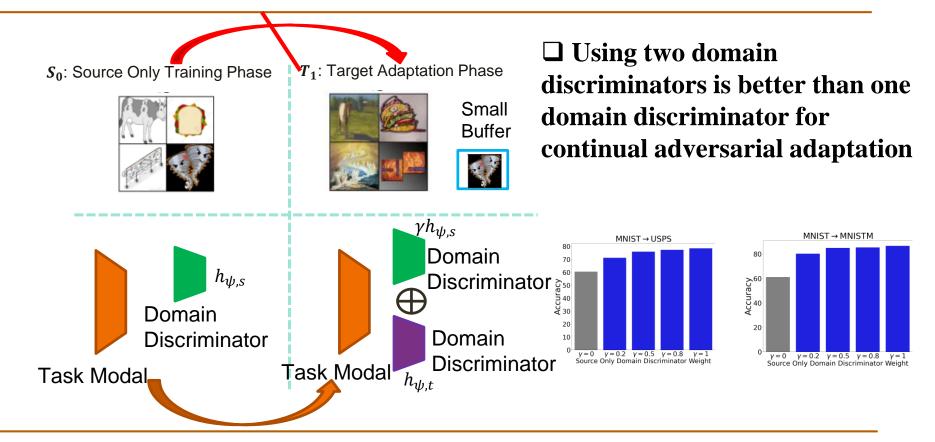
Let \mathcal{F} be a hypothesis space with VC dimensions d, if \mathcal{S}' are samples of size m from \mathcal{S} and \mathcal{T}' be samples of size n from \mathcal{T} respectively and $\hat{d}_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{S}',\mathcal{T}')$ is the empirical \mathcal{H} -divergence between samples, then for any $\delta \in (0,1)$, with probability at least $1 - \delta$

$$d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{S}',\mathcal{T}') \leq \hat{d}_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{S}',\mathcal{T}') + 2\sqrt{\frac{dlog2m + \log\left(\frac{2}{\delta}\right)}{m}} + 2\sqrt{\frac{dlog2n + \log\left(\frac{2}{\delta}\right)}{n}}$$

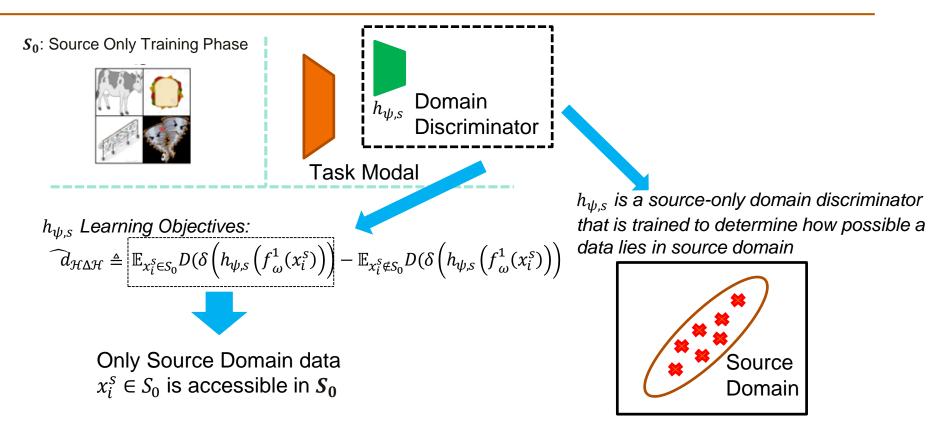
Our work: Double-Head Continual Adv Adaptation



Our work: Double-Head Continual Adv Adaptation



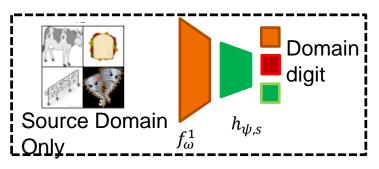
Our work: Single Domain Discriminator Learning on S_0



Our work: Single Domain Discriminator Learning on S_0

One-Class Learning on Source-only domain discriminator

- H-Regularization Loss in Binary domain digit
- MDD Loss in Multi-class domain digit



MDD Learning Objectives $h_{\psi,s}(\cdot)$ is a vector output function :

$$\hat{d}_{\mathcal{H}\Delta\mathcal{H}} \triangleq \mathbb{E}_{x_i^s \in S_0} softmax \left(h_{\psi,s} \left(f_{\omega}^1(x_i^s), \operatorname{argmax}_c f_{\omega}^2 \right) \right)$$

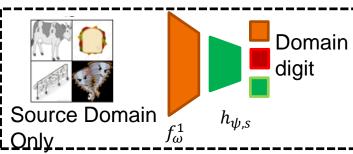
H-Regularization Learning Objectives $h_{\psi,s}(\cdot)$ is scalar output function :

$$\widehat{d}_{\mathcal{H}\Delta\mathcal{H}} \triangleq \mathbb{E}_{x_i^s \in S_0} sigmoid\left(h_{\psi,s}\left(f_{\omega}^1(x_i^s)\right)\right) + \lambda ||\nabla_{\psi,s} h_{\psi,s}\left(f_{\omega}^1(x_i^s)\right)||_2^n$$

Our work: Single Domain Discriminator Learning on S_0

□ One-Class Learning on Source-only domain discriminator

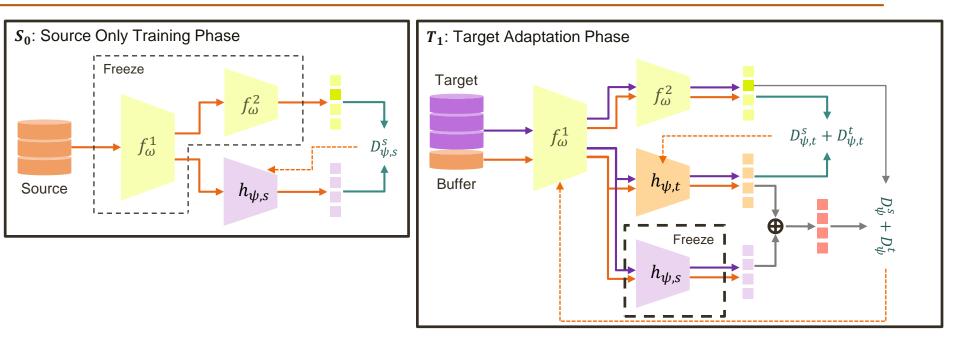
- H-Regularization Loss in Binary domain digit
- MDD Loss in Multi-class domain digit



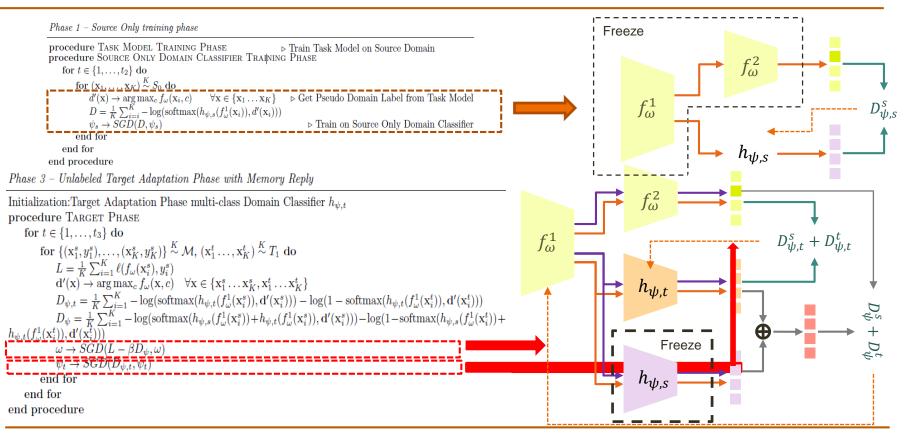
MDD is better than H-Reg

$h_{\psi,s}$ Learning	MDD	H-Reg DANN	H-Reg CDAN
$MNIST \rightarrow USPS$	78.1	69.1	73.4
$MNIST \rightarrow MNISTM$	87.3	78.1	80.3
$MNIST \rightarrow SVHN$	45.8	37.5	40.8

Our work: Our Algorithm

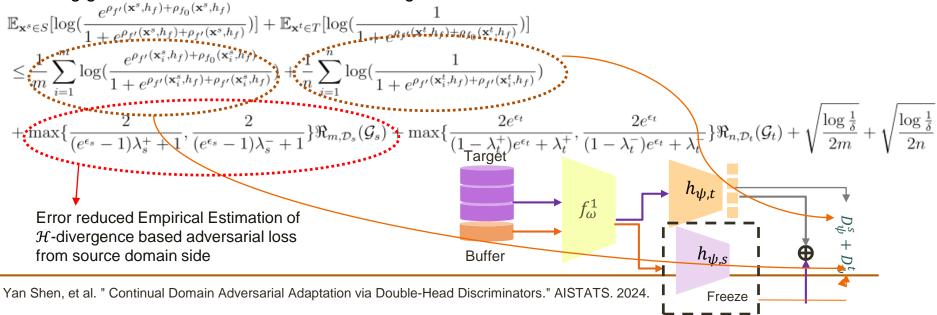


Our work: Our Algorithm



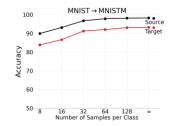
Theorem

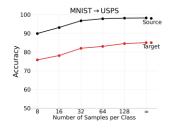
Let $f_0 \in \mathcal{F}$ be a fixed hypothesis space that maps from $\mathcal{X} \times \mathcal{Y} \to R$ which satisfies that $\rho_{f_0}(x^s, h_f) \ge \epsilon_s$ for source domain data x^s and $\rho_{f_0}(x^t, h_f) \le \epsilon_t$ for target domain data x^t . if $x_i^s \in S$ are i.i.d samples of size m from S and $x_i^t \in T$ be samples of size n from \mathcal{T} respectively, then for any $\delta \in (0,1)$ with probability at least $1 - 2\delta$, we have the following generalization error bound for \mathcal{H} -divergence based adversarial loss function

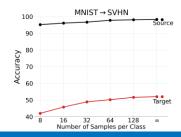


Our work: Experiment Results

DAblation study







Our proposed algorithm entails minimal performance loss from smaller buffer size

source-only domain discriminator training

Comparing with existing continual domain adaptation methods on Office-31

	Office-31 Target Domain Adaptations									
Methods	$A \to W$	$D \to W$	$W \rightarrow D$	$A \rightarrow D$	$D \rightarrow A$	$W \to A$				
NLL-OT(Asano et al., 2019)	85.5	95.1	98.7	88.8	64.6	66.7				
NLL-KL(Zhang et al., 2021)	86.8	94.8	98.7	89.4	65.1	67.1				
HD-SHOT(Liang et al., 2020)	83.1	95.1	98.1	86.5	66.1	68.9				
SD-SHOT(Liang et al., 2020)	83.7	95.3	97.1	89.2	67.9	71.1				
DINE(Liang et al., 2022)	86.8	96.2	98.6	91.6	72.2	73.3				
Ours	92.6	97.3	99.2	92.0	73.9	73.8				
Ours+KD	93.8	98.4	100.0	93.8	74.0	75.6				
Ours+SL	93.2	97.7	100.0	92.5	73.9	74.4				
i.i.d-adv	94.5	98.4	100.0	93.5	74.6	74.2				

	Office-31 Source Domain Forgetting									
Methods	$A \to W$	$D \to W$	$W \rightarrow D$	$A \rightarrow D$	$D \rightarrow A$	$W \to A$				
NLL-OT(Asano et al., 2019)	4.53	3.14	2.73	4.30	6.17	5.11				
NLL-KL(Zhang et al., 2021)	4.37	2.99	2.48	4.02	5.94	4.99				
HD-SHOT(Liang et al., 2020)	5.12	4.01	3.98	4.87	7.80	5.56				
SD-SHOT(Liang et al., 2020)	5.31	4.54	4.03	4.85	7.88	5.72				
DINE(Liang et al., 2022)	3.81	2.16	1.50	3.32	5.08	3.98				
Ours	1.97	1.03	0.98	1.55	3.72	2.96				

Table 3: Office-31 Target Domain Adaptation

Table 4: Office-31 Source Domain Forgetting

- With a final stage of SSL fine-tuning, our proposed methods achieve over 2% performance increase over these strong baselines
- By employing continual adversarial adaptation methods, we effectively addressed catastrophic forgetting by learning a domain generalized model

Our work: Experiment Results

Comparing with existing continual domain adaptation methods on Office-home

	Office-home Target Domain Adaptations											
Methods	$Ar \rightarrow Cl$	$Ar \rightarrow Pr$	$Ar \rightarrow Re$	$Cl \to Ar$	$Cl \to Pr$	$Cl \rightarrow Re$	$Pr \rightarrow Ar$	$Pr \rightarrow Cl$	$Pr \to Re$	$Re \rightarrow Ar$	$Re \to Cl$	$Re \to Pr$
NLL-OT(Asano et al., 2019)	49.1	71.7	77.3	60.2	68.7	73.1	57.0	46.5	76.8	67.0	52.3	79.5
NLL-KL(Zhang et al., 2021)	49.0	71.5	77.1	59.0	68.7	72.9	56.4	46.9	76.6	66.2	52.3	79.1
HD-SHOT(Liang et al., 2020)	48.6	72.8	77.0	60.7	70.0	73.2	56.6	47.0	76.7	67.5	52.6	80.2
SD-SHOT(Liang et al., 2020)	50.1	75.0	78.8	63.2	72.9	76.4	60.0	48.0	79.4	69.2	54.2	81.6
DINE(Liang et al., 2022)	52.2	78.4	81.3	65.3	76.6	78.7	62.7	49.6	82.2	69.8	55.8	84.2
Ours	53.8	78.8	81.9	66.4	77.8	77.9	63.0	52.9	83.2	72.0	59.4	84.9
Ours+KD	54.8	81.1	84.0	67.5	79.0	80.5	65.1	53.8	84.5	73.2	60.0	86.7
Ours+SL	54.0	79.2	82.4	66.8	78.3	79.0	63.7	53.2	83.2	72.8	59.4	85.8
i.i.d-adv	54.9	79.0	82.8	67.0	78.7	78.1	63.6	54.2	83.8	72.9	60.8	85.8

Table 1: Comparison of Target Domain Adaptation Performance on Office-home.

	Office-home Source Domain Forgetting											
Methods	$Ar \rightarrow Cl$	$Ar \rightarrow Pr$	$A \tau \rightarrow R e$	$Cl \rightarrow Ar$	$Cl \to Pr$	$Cl \to Re$	$Pr \rightarrow Ar$	$Pr \rightarrow Cl$	$Pr \to Re$	$Re \to Ar$	$Re \to Cl$	$Re \to Pr$
NLL-OT(Asano et al., 2019)	10.91	7.64	7.31	12.73	13.18	11.13	7.29	7.72	6.19	7.07	7.28	5.35
NLL-KL(Zhang et al., 2021)	10.93	7.66	7.34	13.01	13.05	10.98	7.27	7.50	6.03	6.97	7.26	5.46
HD-SHOT(Liang et al., 2020)	11.10	9.69	8.06	14.99	15.02	12.06	7.57	7.86	6.58	7.22	7.92	6.02
SD-SHOT(Liang et al., 2020)	11.21	8.93	7.89	15.24	15.55	12.25	7.75	7.93	6.72	7.22	8.13	6.05
DINE(Liang et al., 2022)	9.67	6.66	6.26	9.29	10.02	9.76	6.13	5.92	5.82	6.19	6.05	4.93
Ours	4.52	3.95	3.53	5.12	4.83	4.69	1.93	2.05	1.89	2.12	3.13	1.43

Table 2: Comparison of Source Domain Forgetting Performance on Office-home.

Thank you for listening!

Q & A