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Introduction

▶ We study the following low-rank matrix recovery problem:

min
𝑋∈ℝ𝑛×𝑟

𝑓(𝑋) ≔ 1
2‖𝒜(𝑋𝑋𝑇 ) − 𝑏‖2

= 1
2‖𝒜(𝑋𝑋𝑇 − 𝑍𝑍⊤)‖2

(1)

▶ 𝒜 ∶ ℝ𝑛×𝑛 → ℝ𝑚:

𝒜(𝑀) = [⟨𝐴1, 𝑀⟩, … , ⟨𝐴𝑚, 𝑀⟩]𝑇 ,

▶ 𝐴1, … , 𝐴𝑚 ∈ ℝ𝑛×𝑛 are called sensing matrices. 𝑏 = 𝒜(𝑀∗).
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Introduction

Definition 1
The linear operator 𝒜(⋅) ∶ ℝ𝑛×𝑛 → ℝ𝑚 is said to satisfy the 𝛿-RIP2𝑟
property for some constant 𝛿 ∈ [0, 1) if the inequality

(1 − 𝛿)‖𝑀‖2
𝐹 ≤ ‖𝒜(𝑀)‖2 ≤ (1 + 𝛿)‖𝑀‖2

𝐹

holds for all 𝑀 ∈ ℝ𝑛×𝑛 with rank(𝑀) ≤ 2𝑟.

▶ [Recht et al., 2010, Candès and Tao, 2010] As along as 𝛿5𝑟∗ ≤ 1/10,
the SDP relaxation was tight and 𝑀∗ could be recovered exactly.

▶ [Bhojanapalli et al., 2016] For factorized problem (1), as long as
𝛿2𝑟 ≤ 1/5, all second-order critical points (SOPs) of (1) are ground
truth solutions.

▶ [Zhang et al., 2019] 𝛿2𝑟 = 1/2 was a sharp bound when 𝑟 = 𝑟∗,
meaning that as long as 𝛿2𝑟 < 1/2, all problem instances of (1) are
free of spurious solutions, and once 𝛿2𝑟 ≥ 1/2, it is possible to
establish counter-examples with SOPs not corresponding to ground
truth solutions.
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Introduction

Nice guarantees exist when 𝛿 < 1/2, but things become more
complicated if 𝛿 exceeds that range

▶ Benign landscape near 𝑀∗. [Zhang et al., 2019] proved that when
𝛿2𝑟 ≥ 1/2 for 𝑟 = 1, we can ensure the absence of spurious solutions
in a local region that is close to 𝑀∗.

▶ Over-parametrization with 𝑟 ≥ 𝑟∗. [Zhang, 2022] proved that if
𝑟 > 𝑟∗[(1 + 𝛿𝑛)/(1 − 𝛿𝑛) − 1]2/4, with 𝑟∗ ≤ 𝑟 < 𝑛, then every SOP
𝑋̂ satisfies that 𝑋̂𝑋̂⊤ = 𝑀∗.

▶ The SDP approach. When using SDP, it was recently proven in
[Yalcin et al., 2023] that as long as the RIP constant 𝛿2𝑟∗ is lower
than the maximum of 1/2 and 2𝑟∗/(𝑛 + (𝑛 − 2𝑟∗)(2𝑙 − 5)), the
global solution of the SDP relaxation corresponds to 𝑀∗.
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Introduction

▶ In summary, various studies have been conducted to address the
optimization landscape of (1) when the RIP constant is larger than
1/2.

▶ These method require either
1. increase the complexity of the algorithm by a large margin (via

over-parametrization 𝑟 ≫ 𝑟∗, SDP relaxation, or tensor optimization).
2. initialize the algorithm close to 𝑀 ∗.

▶ Does there exist meaningful global guarantees for (1) in the case of
𝛿 ≥ 1/2 without increasing the computational complexity of the
problem drastically? .
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Disappearance of Spurious Solutions

▶ We study the landscape far away from 𝑀∗ in the problematic case
𝛿2𝑟 ≥ 1/2.

Lemma 2
A point 𝑋 is a first-order critical point of (1) if

∇𝑓(𝑋) = (
𝑚

∑
𝑖=1

⟨𝐴𝑖, 𝑋𝑋⊤ − 𝑀∗⟩𝐴𝑖) 𝑋 = 0 (2)

and it is a second-order critical point if it satisfies the above condition
together with

∇2𝑓(𝑋)[𝑈, 𝑈] =
𝑚

∑
𝑖=1

⟨𝐴𝑖, 𝑈𝑋⊤ + 𝑋𝑈⊤⟩2 + ⟨𝐴𝑖, 𝑋𝑋⊤ − 𝑀 ∗⟩⟨𝐴𝑖, 2𝑈𝑈⊤⟩ ≥ 0 ∀𝑈 ∈ ℝ𝑛×𝑟

(3)
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Disappearance of Spurious Solutions

Theorem 3
Assume that (1) satisfies the RIP𝑟+𝑟∗ property with constant 𝛿 ∈ [0, 1).
Given a first-order critical point 𝑋̂ ∈ ℝ𝑛×𝑟 of (1), if it satisfies the
inequality

‖𝑋̂𝑋̂⊤ − 𝑀∗‖2
𝐹 > 21 + 𝛿

1 − 𝛿 tr(𝑀∗)𝜎𝑟(𝑋̂)2, (4)

then 𝑋̂ is not a second-order critical point and is a strict saddle point
with ∇2𝑓(𝑋̂) having a strictly negative eigenvalue not larger than

2(1 + 𝛿)𝜎𝑟(𝑋̂)2 − ‖𝑋̂𝑋̂⊤ − 𝑀∗‖2
𝐹 (1 − 𝛿)

tr(𝑀∗) (5)
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Disappearance of Spurious Solutions
Theorem 4 ([Zhang and Zhang, 2020])
Assume that (1) satisfies the RIP property with constant 𝛿 ∈ [0, 1).
Given an arbitrary constant 𝜏 ∈ (0, 1 − 𝛿2), if a second-order critical
point 𝑋̂ ∈ ℝ𝑛×𝑟 of (1) satisfies

‖𝑋̂𝑋̂⊤ − 𝑀∗‖𝐹 ≤ 𝜏𝜆𝑟∗(𝑀∗) (6)

then 𝑋̂ corresponds to the ground truth solution.
Theorem 5
Consider the problem (1) under the RIP𝑟+𝑟∗ property with a constant
𝛿 ∈ [0, 1). Assume that its ground truth solution 𝑀∗ satisfies the
following inequality

‖𝑀∗‖𝐹
tr (𝑀∗)

𝜆2𝑟∗ (𝑀∗) ≤
√𝑟
2
√

2
(1 + 𝛿)1/2(1 − 𝛿)7/2, (7)

Then, every second-order critical point 𝑋̂ of (1) satisfies

𝑋̂𝑋̂⊤ = 𝑀∗
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Higher-order Loss Functions
▶ Although Theorem 3 proves that critical points far away from the

ground truth are strict saddle points, the time needed to escape such
points depends on the local curvature of the function
[Ge et al., 2017, Jin et al., 2021].

▶ Therefore, it is essential to understand whether the curvatures at
saddle points could be enhanced to reshape the landscape favorably.

▶ In this work, we address this problem by the use of a modified loss
function

min
𝑋∈ℝ𝑛×𝑟

𝑓 𝑙
𝜆(𝑋) ≔ 𝑓(𝑋) + 𝜆𝑓 𝑙(𝑋) (8)

where

𝑓 𝑙(𝑋) ≔ 1
𝑙 ‖𝒜(𝑋𝑋⊤) − 𝑏‖𝑙

𝑙 (9a)

ℎ𝑙(𝑀) ≔ 1
𝑙 ‖𝒜(𝑀) − 𝑏‖𝑙

𝑙 (9b)
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Higher-order Loss Functions
Theorem 6
Assume that the operator 𝒜(⋅) satisfies the RIP𝑟+𝑟∗ property with
constant 𝛿 ∈ [0, 1). Consider the high-order optimization problem (8)
such that 𝑙 ≥ 2 is even. Given a first-order critical point 𝑋̂ ∈ ℝ𝑛×𝑟 of
(8), if

𝐷2 ≥ tr(𝑀∗)𝜎2
𝑟(𝑋̂) (1 + 𝛿) + 𝜆(𝑙 − 1)(1 + 𝛿)𝑙/2𝐷𝑙−2

(1 − 𝛿)/2 + 𝜆𝐶(𝑙)(1 − 𝛿)𝑙/2𝐷𝑙−2 , (10)

then 𝑋̂ is a strict saddle point with ∇2𝑓(𝑋̂) having a strictly negative
eigenvalue not larger than

[2(1 + 𝛿)𝜎𝑟(𝑋̂)2 − 𝐷2(1 − 𝛿)
tr(𝑀∗) ] +

𝜆𝐷𝑙−2 [2(1 + 𝛿)𝑙/2(𝑙 − 1)𝜎𝑟(𝑋̂)2 − 2(1 − 𝛿)𝑙/2𝐶(𝑙)𝐷2

tr(𝑀∗) ]
(11)

where 𝐷 ≔ ‖𝑋̂𝑋̂⊤ − 𝑀∗‖𝐹 , 𝐶(𝑙) ≔ 𝑚(2−𝑙)/2 ( 2𝑙−1
𝑙 − 1)
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Higher-order Loss Functions
▶ This can be compared to the lifted technique proposed in

[Ma et al., 2023]. The presented method can amplify the negative
curvature of those points 𝑋 that satisfy

‖𝑋𝑋⊤ − 𝑀∗‖2
𝐹 ≥ 1 + 𝛿

1 − 𝛿 tr(𝑀∗)𝜎2
𝑟(𝑋̂)

▶ Where in comparison to (10) the multiplicative factor to
tr(𝑀∗)𝜎2

𝑟(𝑋̂) becomes
(1 + 𝛿) + 𝜆(𝑙 − 1)(1 + 𝛿)𝑙/2𝐷𝑙−2

(1 − 𝛿)/2 + 𝜆𝐶(𝑙)(1 − 𝛿)𝑙/2𝐷𝑙−2 ,

which is on the order of magnitude of

𝒪 (𝑙 (
√𝑚

2 )
𝑙
(1 + 𝛿

1 − 𝛿 )
𝑙/2

) ,

▶ This means that by utilizing a high-order loss, we can recover some
of the desirable properties of an over-parametrized technique.
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Simulation Results

n 𝜆 𝜆min(∇2𝑓 𝑙(𝑋̂)) 𝜆max(∇2𝑓 𝑙(𝑋̂)) 𝜆min(∇2𝑓 𝑙(𝑋∗)) 𝜆max(∇2𝑓 𝑙(𝑋∗))
3 0 1.821 3.642 2.18 4.36
3 0.5 1.779 3.855 2.18 4.36
3 5 1.594 7.422 2.18 4.36
3 50 1.470 55.028 2.18 4.36
5 0 0.429 3.898 0.54 4.72
5 0.5 0.421 4.106 0.54 4.72
5 5 0.385 9.117 0.54 4.72
5 50 0.354 69.816 0.54 4.72
7 0 0.516 3.642 0.72 5.08
7 0.5 0.502 4.122 0.72 5.08
7 5 0.456 10.006 0.72 5.08
7 50 0.433 75.786 0.72 5.08
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Simulation Results

Figure: The ratio between the largest and smallest eigenvalue of Hessian at the
spurious local minimum 𝜆max/𝜆min(∇2𝑓 𝑙(𝑋̂)) with respect to 𝜆 under different
size 𝑛.
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Simulation Results

(a) 𝜆 = 0 converges to ground truth (b) 𝜆 = 0 converges to a spurious
solution around the ground truth

Figure: The evolution of the objective function and the error between the
obtained solution 𝑋̂𝑋̂𝑇 and the ground truth 𝑀 ∗ during the iterations of the
perturbed gradient descent method, with a constant step-size. In both cases,
high-order loss functions accelerate the convergence.
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Simulation Results

Figure: Different rows represents different problems. 𝜆 = 0 (left column),
𝜆 = 0.5 (middle column), 𝜆 = 5 (right column), with x-axis and y-axis as two
orthogonal directions from the critical point to the ground truth.
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