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Federated Learning

" Federated Learning (FL): n clients collaborate to train a machine
learning model under the orchestration of a central server,
without sharing their raw data.

= FL systems are vulnerable to attacks and failures [1,2].

- Some clients may have corrupted data or upload malicious gradients.

- These behaviors can cause sub-optimal convergence, or even divergence.

[1] Peter Kairouz, et al.: Advances and Open Problems in Federated Learning. Found. Trends Mach. Learn. 2021.
[2] Lingjuan Lyu, et al.: Privacy and robustness in federated learning: Attacks and defenses. 2020.




FedSGD: A Prototype Framework of FL

= FedSGD [1]: In each communication rounds,

1. The server broadcast the parameter w to all clients.

2. Each honest client i € H computes the gradient g;

based on local data and sends the honest gradient to
the server.

3. Each Byzantine client i € B sends arbitrary Byzantine

gradient to the server, due to failures or attacks. )

4. The server aggregates all n gradients i = Agg({g;}i-1
and update the model w; « w; — i

Example: Average aggregation: Agg({g;}i=,) = % =19

[1] Brendan McMahan, et al.: Communication-Efficient Learning of Deep Networks from Decentralized Data. AISTATS 2017.




Robust Aggregation Rules (AGRs)

= Robust AGRs replaces the Average aggregation with a robust
estimator of the true gradient Eu = Wllzie}[ Eg;.

= Example: One-dimensional aggregation,
- Data: -0.4,-0.2,-0.1,0.0, 0.1, 0.2, 0.4, 100.0 (Byzantine)
- True mean: 0.0 Average: 12.5> 0.0 Median: 0.05 = 0.0

" Previous works mostly assume IID clients: Eg; = Eg;,Vi,j € H

= Qur work: Non-IlID clients with different label distributions,




c-Label Skewness

= c-label skew distribution: Data distribution for each honest client

i € H can be expressed as
Pi(&) =) pi-Q.(£), VieH
z=1

where

- P;(&) is the data distribution of client i,

- The label z can take c finite values,

- piy = 0 is the label distribution of client i subject to }.5_; p;, = 1,
- Q,(&) = P;(& ]| z) represents the conditional distribution given z.

- Different clients share the same {Q,(§)};-, but different p; = [p;1, -, Pic
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Expectation of Honest Gradients

*= Proposition 3.3. With c-label skew distribution we have

Eg;, = > pi.Ev,, VieH

|
where

- Ey, = Vy 2:0,(§)L(w; §) is the expected gradient computed with data
from class z.

= We define
- Honest simplex: {¥;_1p;Ey;:27-1p, =1,p, = 0}
- Honest subspace: {).5_p,Ey,:Ds_1p, =1}




Distribution of Honest Gradients

= QOur findings:
- Honest gradient’s expectations distribute on the honest simplex.

- Honest gradients distribute near the honest simplex.
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= Empirical verification: PCA of honest clients on MNIST (¢ = 10). Over 99% of
the variance concentrate on the first (¢ — 1) principal components




Challenge 1: Selection Bias

= Selection Bias: Robust AGRs are biased to certain clients, even
In the absence of any attacks.

Krum, IID clients, w.o. attacks Krum, non-IID clients, w.o. attacks BOBA, non-IlID clients, w.o. attacks
+'H" +'H"
++ ++
A 0 @
H
+
+ honest grads }ﬁt ##
©® true aggregation
I aggregation

When applied to non-IID clients, Krum [1] is biased to the majority of clients.  BOBA is unbiased.

[1] Peva Blanchard, et al.: Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent. NeurlPS 2017.




Challenge 2: Increased Vulnerability

" |ncreased vulnerability: Robust AGRs can deviate more from the
center in all directions.

Krum, IID clients, w. attacks Krum, non-IID clients, w. attacks BOBA, non-lID clients, w. attacks
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Orange region is the range of aggregations given different Byzantines.




Our Method: BOBA

= Byzantine-rObust and unBiased Aggregator

- Stage 1: Fitting the honest subspace, and

projecting all gradients to this subspace
- Stage 2: Finding the honest simplex, /://;
reconstructing the label distribution for each /
client, and dropping clients with abnormal label ﬁ
distribution. Y metne e
= All honest gradients are kept ®_ est honest area
B aggregated

= Byzantine gradientss are either weakened
(in stage 1) or discarded (in stage 2).
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BOBA: Overview
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Initialize subspace (line 1)
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After convergence, project (line 5)
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Update nearest gradients (line 3)
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fitted subspace
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Filter and aggregate (line 7, 8)
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BOBA Stage 1: Fitting the Honest Subspace

= Vanilla truncated singular value decomposition (TrSVD) can fit a
subspace, by minimizing the reconstruction loss

(P)=>_llg; ~ r(g)l>

where
- P is the fitted subspace,

- Ilp is a projection function that projects vectors to P.

= However, TrSVD is vulnerable to Byzantine attacks.

-12 -



BOBA Stage 1: Fitting the Honest Subspace

= |[nstead, we minimize the trimmed reconstruction loss
737 T = arg min Et(Pa T) — Zri ||gz o HP(gz)Hg s.t. Zri =n— f
P,re{0,1}" i=1 :
which ensures robustness by dropping f gradients furthest from 2.

= We use alternating optimization to minimize the objective

- Update nearest gradients: Fixing P, the optimal r selects then — f
nearest neighbors of P.

- Update fitted subspace: Fixing r, the optimal P can be fitted by conducting
TrSVD on the selected n — f gradients.

-13 -



BOBA Stage 1: Fitting the Honest Subspace

Initialize subspace (line 1)

Update nearest gradients (line 3)

Update fitted subspace (line 4)

After convergence, project (line 5)
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= After fitting the honest subspace, project all gradients to it.

= Some Byzantine gradients might be close to the honest subspace,
but far from the honest simplex...
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BOBA Stage 2: Finding the Honest Simplex

= Use server data to estimate c vertices of the honest simplex.

= Estimate the label distribution for each client i, solve for {p;,}, -4

szz 'p(’Yz) — ’P(gz szz =1

- Honest client: p;, = p;, = 0, all entries should be positive or close to 0.

- Byzantine client: p;, can be arbitrary.

= We drop a client if its estimated label distribution has strongly
negative entries.

a = A({f)z}?zl), Where a; = ]I{mlnpzz Z pmin}
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After convergence, project (line 5)
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+
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fitted subspace
O nearest client grads

Filter and aggregate (line 7, 8)

Estimate honest simplex (line 6)

+  proj. honest grads
proj. byzantine grads \
A proj. server grads
— fitted simplex

Drop grads whose projections
are out of the fitted simplex

Average the remained
projected client grads

O dropped grads
B aggregated

= Average the remained projected client gradients as the
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Computation Complexity

" The computation complexity of BOBA is O(kcnd), where
- k is the times conducting TrSVD, which is small in our experiments,
- ¢ is the number of classes,
- n is the number of clients,

- d is the dimension of gradients.

= \WWhen k, c are small constants, BOBA has the same order of
complexity as vanilla Average.

-17 -



Bounded Gradient Estimation Error

" Theorem 5.5. BOBA has bounded gradient estimation error of
E”[:l, — E[.l,”% S 0162 + 0262 + Cgﬁzég

where

B| . . . .
- B = % is the fraction of Byzantine clients,

- €, € are inner variations (from randomness of data sampling).
- ¢ is outer variation from non-lIDness.

- (4, C,, C5 are constants.

= BOBA is unbiased and has optimal order robustness.
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Experiment Setup

= Three scenarios:
- 3-layer MLP for MNIST
- 5-layer CNN for CIFAR-10
- GRU network for AG-News

= Pathological partition: each client only has two classes of data.

-19 -



Experiments: Unbiasedness d)

= BOBA has accuracy very

close to Average, and the Table 1: Evaluation of unbiasedness (mean (s.d.) %
over five random seeds, || = 100, 100, 160, |B| = 0)
smallest MRD among all

Method
Acc 1 MRD | Acc 1 MRD | Acc 1 MRD |

robust AGRs. Average 925 0 - TLTwos - 8830y -

Server 82.0 (05) 18.8 (1.9) 24.4 (200 61.7 (19) 82.7 1.4y 8.8 3.5)
CooMed 734 (5.8) 62.9 (24.3) 18.0 2.8y 79.8 (3.3) 80.4 (4.5) 18.6 (12.0)

. - - 1 TrMean 82.3 279 59.4 (20.9) 22.3 (11.3) 81.4 (22) 86.9 (05) 5.8 (3.6)

- MRD: max-recall-drop, smaller is Krun. 35000y 081 mn B0 S8 on 58 en B3
MKrum 91.7 0.1y 10.0 230 70.5 0.7y 11.1 3.7y 88.0 (0.1) 4.6 (2.1)

better GeoMed 91.9 (0.1) 3.1 (03) 71.6 08y 5.1 11) 88.4 1) 0.4 (02

SelfRej 91.7 01y 9.6 (0.8) 70.1 12y 13.5 6.1) 86.6 (1.8) 13.5 (9.9)
AvgRej 91.1 (05) 18.1 (80) 71.0 (0.5) 11.2 (6.8) 85.8 (0.9) 15.6 (6.2)
Zeno 91.7 0.1y 10.3 200 70.2 0.8y 11.5 (a1) 86.4 (1.5) 14.1 (s.6)
FLTrust 85.6 (06) 18.9 3.5 53.1 (0.9 32.2 27y 86.3 (0.4) 5.8 (1.0)
ByGARS 76.7 1.9) 59.9 (10.2) 32.0 .7y 60.7 6.4y 44.9 (6.5) 82.0 (4.3)
B-Krum 73.8 (48) 93.8 3.1) 59.0 1.0y 81.4 (22) 87.3 (06) 5.0 (2.8)
B-MKrum 92.0 0.1y 2.9 (05) 70.9 (0.8) 6.2 (09) 87.8 (0.3) 3.3 (1.5)
RAGE 59.8 (0.5) 90.1 (0.5) 58.3 (1.5) 56.4 (10.0) 63.9 (6.1) 80.2 (5.2)
BOBA 92.5 o1y 1.3 a7 709 (09 4.0 a7 88.3 (01) 0.2 (01)
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Experiments: Robustness

Table 2: Evaluation of robustness (Accuracy, mean (s.d.) % over five random seeds)

MNIST (|H| = 100, |B| = 15) CIFAR-10 (|H| = 100, |B| = 15) AG-News (|H| = 160, |B| = 54)
Gauss IPM LIE Mimic MinMax MinSum Wst Gauss IPM LIE Mimic MinMax MinSum Wst Gauss IPM LIE Mimic MinMax MinSum Wst

Average 9.8 (00) 9.8 (0.0) 92.4 (0.1) 92.1 (0.1) 90.0 (0.2) 90.8 (0.1) 9.8 10.0 (0.0) 10.0 (0.0) 68.2 (0.8) 70.3 (0.5) 33.2 (5.9) 33.1 5.3y 10.0 25.4 (2.6) 25.0 (0.0) 87.5 (0.2) 87.2 (0.3) 35.9 3.6) 30.5 (3.0) 25.0
CooMed 68.0 (.99 42.0 3.7y 89.6 (0.3) 65.0 (6.2) 77.2 3.1y 77.2 (31) 42.0 18.2 0.8y 7.0 (1.3) 22.0 0.8y 14.9 1.0y 18.0 2.3y 18.0 2.3y 7.0 86.0 0.3y 58.6 0.9y 81.7 (0.3) 82.2 (1.7) 61.2 (17.6) 60.9 (17.4) 58.6
TrMean 91.7 (0.1) 63.8 (10.0) 88.9 (0.6) 83.2 (2.0) 88.8 (0.2) 88.8 (0.2) 63.8 57.3 (1.5 14.4 (26) 30.6 (150 30.1 (5.1) 22.4 (2.4) 23.2 (4.1) 14.1 88.1 (0.3) 57.5 (7.7) 85.2 (0.2) 82.4 (3.8) 67.5 (16.3) 74.4 (55 57.5
Krum 42.6 (3&) 42.6 3.8) 91.3 (0.1) 37.2 (6.4) 44.0 (5.1) 42.9 (a.q) 37.2 38.4 1.7y 35.9 37y 40.1 2.3y 31.8 3.7y 34.0 (2.5 39.1 (26) 31.8 66.3 (1.9) 66.8 (1.7) 80.3 (1.0) 46.6 (0.4) 66.2 (2.1) 65.7 (3.3) 46.6
MKrum 92.4 02) 85.3 (5.3) 92.0 (0.2) 91.4 (0.2) 92.4 (0.1) 92.3 (0.1) 85.3 71.7 (0.8) 50.9 (11.2) 66.0 (1.1) 69.6 (0.5) 70.1 (0.3) 60.5 (3.0) 50.9 88.3 (0.2) 80.7 6.0y 86.6 (0.2) 83.4 (0.6) 88.3 (0.1) 85.9 (0.3) 80.7
GeoMed 91.9 0.1y 82.2 (0.5) 91.6 0.1y 89.5 (0.3) 91.2 (0.1) 91.3 (0.1) 82.2 71.5 (06) 52.6 (2.5) 43.9 (2.3) 62.1 (0.6) 43.5 (3.0) 43.4 (2.3) 43.4 88.3 (0.1) 77.5 (299 83.5 (0.2) 84.1 0.2) 83.5 (0.3) 83.6 (0.3) T7.5
SelfRej 92.4 (0.2) T1.1 (25 92.0 0.1y 91.4 (0.1) 87.6 (1.1) 88.6 0.1y 715 TL.7 (0.9) 14.2 (33) 66.0 (1.2) 69.3 (09) 32.1 (2.3) 32.4 (1.0) 14.2 88.4 (0.1) 25.0 (0.0) 86.4 (0.3) 84.4 (0.8) 38.2 (10.8) 32.6 (2.3) 25.0
AvgRej 9.8 (0.0) 91.0 0.9y 91.8 (0.2) 90.7 0.9y 92.3 (0.1) 92.2 0.1y 9.8 10.0 (0.0) 70.5 (0.7) 67.0 (1.2) 71.6 (0.5) 61.7 (5.2) 58.6 (a.6) 10.0 41.1 (7.7) 88.0 (0.3) 84.6 (0.4) 88.3 (0.1) 40.7 (7.3) 41.8 (12.1) 40.7
(
(

Method

Zeno 92.4 0.2y T1.1 2.4y 92.0 0.1y 91.4 (0.1) 87.6 (1.1) 88.6 0.7y TL.1 71.5 (05) 14.1 (3.3) 65.8 (1.0) 69.4 (0.5) 32.3 (1.1) 31.3 (3s) 14.1 88.3 (0.1) 25.0 (0.0) 86.5 (0.2) 85.9 (2.1) 53.9 (5.4) 61.6 (13.3) 25.0
FLTrust 85.6 (0.6) 85.6 (0.6) 88.4 (0.7) 85.5 (0.6) 85.8 (0.6) 85.6 (0.6) 85.5 53.0 (0.7) 52.6 (1.1) 48.9 (2.0) 53.3 (1.0) 52.0 (1.7) 51.9 (1.5) 48.9 86.2 (0.5) 86.2 (0.4) 86.2 (0.4) 85.7 (0.8) 85.8 (0.9) 85.8 (0.5) 85.7
ByGARS 76.7 (1.4) 87.5 (o.7) 85.0 0.7y 77.1 (1.3) 76.6 (1.3) 76.6 (1.3) 76.6 31.9 (1.7) 53.6 (0.s) 30.8 (26) 32.2 (1.3) 26.9 (1.9) 26.9 (1.6) 26.9 45.4 (11.2) 48.0 (s.1) 44.5 (11.3) 77.2 (20.1) 59.0 (22.6) 40.7 (2.4) 40.7
B-Krum 78.8 (2.5) 80.0 (1.0) 90.9 0.4y 61.3 (2.2) 79.3 (2.9) 77.6 (2.5) 61.3 58.1 (2.3) 58.1 (1.1) 42.4 (2.4) 46.0 (2.6) 58.8 (0.8) 57.8 (1.1) 42.4 88.3 (0.1) 51.1 (30.0) 87.0 (1.2) 81.6 (3.8) 86.9 (0.4) 86.2 (0.6) 51.1
B-MKrum 92.4 0.1y 85.4 (1.8) 92.2 (0.1) 91.4 (0.0) 91.8 (0.2) 91.1 (0.1) 85.4 71.8 0.6) 32.0 (2.3) 66.0 (0.7) 69.7 0.8y 45.8 (a.9) 42.9 2.7y 32.0 88.3 (0.2) 24.9 (12.6) 85.9 (0.2) 84.9 (0.2) 63.7 (14.2) 60.4 (258.3) 24.9

RAGE 82.6 (1.0) 60.5 (0.9) 80.6 (14.0) 63.9 (2.3) 60.4 (0.9) 59.8 (0.5) 59.8 71.7 (0.5) 63.7 (1.3) 48.3 (2.2) 60.2 (1.1) 59.6 (3.0) 56.8 (1.1) 48.3 28.5 (5.6) 69.5 (2.6) 61.2 (9.4) 48.8 (21.7) 70.6 (1.0) 65.5 (7.3) 28.5
BOBA 92.5 (0.1) 91.6 (0.2) 92.5 (0.2) 91.7 0.4y 92.0 (0.3) 92.0 (0.6) 91.6 71.9 (0.5) 70.1 (0.6) 69.2 (0.7) 69.3 (1.1) T1.2 (0.5) 71.4 (0.5) 69.2 88.3 (0.1) 87.7 (0.7) 88.4 (0.1) 87.3 (0.3) 88.1 (0.1) 88.3 (0.2) 87.3

= BOBA significantly improves the worst-case accuracy by 6.1%,
18.3%, 1.6% on three datasets, respectively.
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" Insights: We make a systematic analysis of FL robustness
challenges under label skewness, including the identification of
two key challenges: selection bias and increased vulnerability.

= Algorithm: We introduce BOBA which addresses both label
skewness and robustness.

"= Theoretical analysis: \We derive bounded gradient estimation
error and convergence guarantee for BOBA.

= Extensive experiments: We evaluate the unbiasedness of
robustness of BOBA across diverse scenarios.
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