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§ Federated Learning (FL): 𝑛 clients collaborate to train a machine 
learning model under the orchestration of a central server,  
without sharing their raw data. 

§ FL systems are vulnerable to attacks and failures [1,2]. 
- Some clients may have corrupted data or upload malicious gradients. 
- These behaviors can cause sub-optimal convergence, or even divergence. 
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Federated Learning

[1] Peter Kairouz, et al.: Advances and Open Problems in Federated Learning. Found. Trends Mach. Learn. 2021. 
[2] Lingjuan Lyu, et al.: Privacy and robustness in federated learning: Attacks and defenses. 2020. 



§ FedSGD [1]: In each communication rounds, 
1. The server broadcast the parameter 𝒘! to all clients. 
2. Each honest client 𝑖 ∈ ℋ computes the gradient 𝒈"

based on local data and sends the honest gradient to 
the server. 

3. Each Byzantine client 𝑖 ∈ ℬ sends arbitrary Byzantine 
gradient to the server, due to failures or attacks. 

4. The server aggregates all 𝑛 gradients (𝝁 = Agg 𝒈" "#$%

and update the model 𝒘! ← 𝒘! − 𝜂(𝝁

Example: Average aggregation: Agg 𝒈" "#$% = $
%
∑"#$% 𝒈"
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FedSGD: A Prototype Framework of FL

[1] Brendan McMahan, et al.: Communication-Efficient Learning of Deep Networks from Decentralized Data. AISTATS 2017. 

😈



§ Robust AGRs replaces the Average aggregation with a robust 

estimator of the true gradient 𝔼𝝁 = !
ℋ
∑#∈ℋ 𝔼𝒈#. 

§ Example: One-dimensional aggregation, 
- Data: -0.4, -0.2, -0.1, 0.0, 0.1, 0.2, 0.4, 100.0 (Byzantine)
- True mean: 0.0 Average: 12.5 ≫ 0.0 Median: 0.05 ≈ 0.0

§ Previous works mostly assume IID clients: 𝔼𝒈# = 𝔼𝒈% , ∀𝑖, 𝑗 ∈ ℋ

§ Our work: Non-IID clients with different label distributions, 
𝔼𝒈# ≠ 𝔼𝒈%
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Robust Aggregation Rules (AGRs)



§ 𝑐-label skew distribution: Data distribution for each honest client 
𝑖 ∈ ℋ can be expressed as

where
- 𝑃" 𝝃 is the data distribution of client 𝑖, 

- The label 𝑧 can take 𝑐 finite values, 
- 𝑝"& ≥ 0 is the label distribution of client 𝑖 subject to ∑&#$' 𝑝"& = 1, 
- 𝑄& 𝝃 = 𝑃" 𝝃 | 𝑧 represents the conditional distribution given 𝑧. 

- Different clients share the same 𝑄& 𝝃 &#$
' but different 𝒑" = 𝑝"$, ⋯ , 𝑝"' (.
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𝒄-Label Skewness



§ Proposition 3.3. With 𝑐-label skew distribution we have

where
- 𝔼𝜸& = ∇𝒘∑𝝃𝑄& 𝝃 ℒ 𝒘; 𝝃 is the expected gradient computed with data 

from class 𝑧.  

§ We define
- Honest simplex: ∑&#$' 𝑝&𝔼𝜸& : ∑&#$' 𝑝& = 1 , 𝑝& ≥ 0
- Honest subspace: ∑&#$' 𝑝&𝔼𝜸& : ∑&#$' 𝑝& = 1
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Expectation of Honest Gradients



§ Our findings: 
- Honest gradient’s expectations distribute on the honest simplex. 
- Honest gradients distribute near the honest simplex. 

§ Empirical verification: PCA of honest clients on MNIST (𝑐 = 10). Over 99% of 
the variance concentrate on the first 𝑐 − 1 principal components
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Distribution of Honest Gradients



§ Selection Bias: Robust AGRs are biased to certain clients, even 
in the absence of any attacks. 
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Challenge 1: Selection Bias

[1] Peva Blanchard, et al.: Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent. NeurIPS 2017. 

When applied to non-IID clients, Krum [1] is biased to the majority of clients.      BOBA is unbiased. 



§ Increased vulnerability: Robust AGRs can deviate more from the 
center in all directions. 

- 9 -

Challenge 2: Increased Vulnerability

Orange region is the range of aggregations given different Byzantines. 

Inaccurate
aggregation



§ Byzantine-rObust and unBiased Aggregator
- Stage 1: Fitting the honest subspace, and 

projecting all gradients to this subspace
- Stage 2: Finding the honest simplex, 

reconstructing the label distribution for each 
client, and dropping clients with abnormal label 
distribution. 

§ All honest gradients are kept
§ Byzantine gradientss are either weakened 

(in stage 1) or discarded (in stage 2). 
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Our Method: BOBA
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BOBA: Overview
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BOBA Stage 1: Fitting the Honest Subspace
§ Vanilla truncated singular value decomposition (TrSVD) can fit a 

subspace, by minimizing the reconstruction loss

where
- 𝒫 is the fitted subspace, 

- Π𝒫 is a projection function that projects vectors to 𝒫. 

§ However, TrSVD is vulnerable to Byzantine attacks. 



§ Instead, we minimize the trimmed reconstruction loss

which ensures robustness by dropping 𝑓 gradients furthest from 𝒫. 
§ We use alternating optimization to minimize the objective

- Update nearest gradients: Fixing 𝒫, the optimal 𝒓 selects the 𝑛 − 𝑓
nearest neighbors of 𝒫. 

- Update fitted subspace: Fixing 𝒓, the optimal 𝒫 can be fitted by conducting 
TrSVD on the selected 𝑛 − 𝑓 gradients. 
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BOBA Stage 1: Fitting the Honest Subspace



§ After fitting the honest subspace, project all gradients to it. 
§ Some Byzantine gradients might be close to the honest subspace, 

but far from the honest simplex… 
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BOBA Stage 1: Fitting the Honest Subspace



§ Use server data to estimate 𝑐 vertices of the honest simplex. 
§ Estimate the label distribution for each client 𝑖, solve for �̂�#& &'!

(

- Honest client: �̂�"& ≈ 𝑝"& ≥ 0, all entries should be positive or close to 0. 
- Byzantine client: �̂�"& can be arbitrary. 

§ We drop a client if its estimated label distribution has strongly 
negative entries. 
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BOBA Stage 2: Finding the Honest Simplex
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BOBA Stage 2: Finding the Honest Simplex

§ Average the remained projected client gradients as the 
aggregation. 



§ The computation complexity of BOBA is 𝒪 𝑘𝑐𝑛𝑑 , where
- 𝑘 is the times conducting TrSVD, which is small in our experiments, 
- 𝑐 is the number of classes, 

- 𝑛 is the number of clients, 
- 𝑑 is the dimension of gradients. 

§ When 𝑘, 𝑐 are small constants, BOBA has the same order of 
complexity as vanilla Average. 
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Computation Complexity



§ Theorem 5.5. BOBA has bounded gradient estimation error of

where

- 𝛽 = ℬ
% is the fraction of Byzantine clients, 

- 𝜖, 𝜖- are inner variations (from randomness of data sampling). 
- 𝛿- is outer variation from non-IIDness. 
- 𝐶$, 𝐶., 𝐶/ are constants. 

§ BOBA is unbiased and has optimal order robustness. 
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Bounded Gradient Estimation Error



§ Three scenarios: 
- 3-layer MLP for MNIST
- 5-layer CNN for CIFAR-10

- GRU network for AG-News

§ Pathological partition: each client only has two classes of data. 
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Experiment Setup



Experiments: Unbiasedness

- 20 -

§ BOBA has accuracy very 
close to Average, and the 
smallest MRD among all 
robust AGRs. 
- MRD: max-recall-drop, smaller is 

better. 
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Experiments: Robustness

§ BOBA significantly improves the worst-case accuracy by 6.1%, 
18.3%, 1.6% on three datasets, respectively. 



§ Insights: We make a systematic analysis of FL robustness 
challenges under label skewness, including the identification of 
two key challenges: selection bias and increased vulnerability. 

§ Algorithm: We introduce BOBA which addresses both label 
skewness and robustness. 

§ Theoretical analysis: We derive bounded gradient estimation 
error and convergence guarantee for BOBA. 

§ Extensive experiments: We evaluate the unbiasedness of 
robustness of BOBA across diverse scenarios. 
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Summary


