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Overview
Motivations
Zero-sum stochastic games, pivotal in competitive reinforcement learning,
epitomize complex decision-making challenges under uncertainty, mirroring
real-world scenarios from economics to sports. The difficulty of mastering
these games lies in optimizing strategies against an opponent that takes
arbitrary time-adaptive history-dependent strategies.

• The main challenge in online learning in a Stochastic Game (SG) is the
opponent’s non-stationarity and uncontrollability.

Question: Is there an online learning algorithm for efficient exploration
in unknown zero-sum stochastic games with an arbitrary time-adaptive
history-dependent opponent?

Zero-sum Stochastic Games:
Stochastic Game M = (S,A, r, θ∗), only θ∗ ∼ µ1 is unknown.
Learning Protocol
for t = 1, . . . , T do

The players observe state st and simultaneously take actions at = (a1
t , a2

t ).
The agent (maximizer) receives reward r(st, at) from the opponent.
The environment decides the next state st+1 ∼ θ(·|st, at).

end
The agent receives

∑T
t=1 r(st, at).

Goal: achieve low regret RT := supπ2∈ΠHR E
[∑T

t=1(J(θ∗)− r(st, at))
]

,

where J(θ∗) is the maximin average reward obtained by the agent and ΠHR

is the space of history-dependent randomized policies and expectation is over
θ∗ ∼ µ1, a1

t ∼ π1(·|ht), a2
t ∼ π2(·|ht) and state dynamics.

Assumption (Finite-Diameter): There exists D ≥ 0 such that for any
stationary randomized policy π2 ∈ ΠSR of the opponent and any s, s′ ∈ S × S,
there exists a stationary randomized policy π1 ∈ ΠSR of the agent, such that
the expected time of reaching s′ starting from s under policy π = (π1, π2)
does not exceed D, i.e.,

max
s,s′

max
π2∈ΠSR

min
π1∈ΠSR

T π
s→s′ ≤ D,

where T π
s→s′ is the expected time of reaching s′ starting from s under policy

π = (π1, π2).

Our Contribution
• The first online RL algorithm (PSRL-ZSG) that achieves Bayesian regret bound

of Õ(HS
√

AT ) in the infinite-horizon zero-sum stochastic games with average-
reward criterion. Here H is an upper bound on the span of the bias function, S is
the number of states, A is the number of joint actions and T is the horizon.

• This improves the best existing regret bound of Õ( 3
√

DS2AT 2) by Wei et al.,
2017 under the same assumption and matches the theoretical lower bound in T .

PSRL-ZSG Algorithm
Algorithm 2 PSRL-ZSG
Input: µ1
Initialization: t← 1, t1 ← 0
for episodes k = 1, 2, · · · do

Tk−1 ← t− tk

tk ← t
Generate θk ∼ µtk

and compute π1
k(·) using Bellman equation.

while t ≤ tk + Tk−1 and Nt(s, a) ≤ 2Ntk
(s, a) for all (s, a) ∈ S ×A do

Choose action a1
t ∼ π1

k(·|st) and observe a2
t , st+1

Update µt+1(dθ) ∝ θ(st+1|st, at)µt(dθ).
t← t + 1

end
end

Explanation:
• PSRL-ZSG proceeds in episodes (tk : start of episode k and Tk : is length of it).
• In the beginning of each episode, the agent draws a sample of the transition kernel

from the posterior distribution µtk
.

• The maximin strategy is then derived for the sampled transition kernel according
to the Bellman equation and used by the agent during the episode.

• The first criterion, t ≤ tk + Tk−1, states that the length of the episode grows at
most by 1 if the other criterion is not triggered. This ensures that Tk ≤ Tk−1 + 1
for all k.

• The second criterion is triggered if the number of visits to a state-action pair is
doubled.

• These stopping criteria balance the trade-off between exploration and exploitation.
In the beginning of the game, the episodes are short to motivate exploration since
the agent is uncertain about the underlying environment. As the game proceeds,
the episodes grow to exploit the information gathered about the environment.

Related Work (Wei et al., 2017)
• Wei et al., 2017 proposes an optimism-based algorithm (UCSG) that ahieves

regret bound of Õ( 3
√

DS2AT 3. Our algorithm significantly improves this
result and achieves a regret bound of Õ(HS

√
AT ) under the finite-diameter

assumption.
• From the analysis perspective, under the finite-diameter assumption, UCSG

uses a sequence of finite-horizon SGs to approximate the average-reward SG
and that leads to the sub-optimal regret bound of O(T 2/3). Our analysis avoids
the finite-horizon approximation by directly using the Bellman equation in the
infinite-horizon SG and achieves near-optimal regret bound.

Main Result

Theorem 2: Under the finite-diameter assumption, Algorithm 2 can achieve
regret bound of Õ(HS

√
AT ).

Proof Sketch
Bellman equation: under the finite-diameter assumption, there exist unique
J(θ) ∈ R and unique (upto an additive constant) function v(·, θ) : S → R that
satisfy the Bellman equation, i.e., for all s ∈ S,

J(θ) + v(s, θ) = val
{

r(s, ·, ·) +
∑

s′

θ(s′|s, ·, ·)v(s′, θ)
}

. (1)

In particular, the Nash equilibrium of the right hand side for each s ∈ S yields
maximin stationary policies π∗ = (π1∗, π2∗) such that

J(θ) + v(s, θ) = max
q1∈∆A1

{
r(s, q1, π2∗(·|s)) +

∑
s′

θ(s′|s, q1, π2∗(·|s))v(s′, θ)
}

,

J(θ) + v(s, θ) = min
q2∈∆A2

{
r(s, π1∗(·|s), q2) +

∑
s′

θ(s′|s, π1∗(·|s), q2)v(s′, θ)
}

.

Regret decomposition:

RT (π2) = E

[
TJ(θ∗)−

T∑
t=1

r(st, at)
]

= E

[
TJ(θ∗)−

KT∑
k=1

tk+1−1∑
t=tk

J(θk)
]

+ E

[
KT∑
k=1

tk+1−1∑
t=tk

(J(θk)− r(st, at))
]

.

• The first term is bounded by E[KT ] where KT is the number of episodes
by time T . This uses a standard proof (using the property of thompson
sampling and the first episode termination criterion). It can be proved that
E[KT ] ≤

√
2SAT log T by episode termination criteria.

• The second term is bounded by HE[KT ] + Õ(HS
√

AT ) and is the main part
of the regret analysis. A key observation for proving this is:

Key observation: The policy π1
k used by the agent at episode k is the

solution of the Nash equilibrium. Thus, for tk ≤ t ≤ tk+1 − 1 and any s ∈ S,
the Nash equilibrium implies that

J(θk) + v(s, θk) ≤ r(s, π1
k(·|s), q2) +

∑
s′

θk(s′|s, π1
k(·|s), q2)v(s′, θk),

for any distribution q2 ∈ ∆A2 . Let π2 = (π2
1 , π2

2 , · · · ) ∈ ΠHR be an arbitrary
history-dependent randomized strategy for the opponent. Note that for any
t ≥ 1, π2

t is ht-measurable. Replacing s by st and q2 by π2
t (·|ht) implies that

J(θk)− r(st, π1
k(·|st), π2

t (·|ht))

≤
∑

s′

θk(s′|st, π1
k(·|st), π2

t (·|ht))v(s′, θk)− v(st, θk).


