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Problem Formulation

• Standard formulation is

w∗(x) := min
w∈W

E[CTw | x ], (1)

w are decision variables, C an unknown cost parameter, x

observed context, and W a compact feasible region

• Nominal: predict ĉ := f (x) and then optimize minw ĉTw .
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Problem Formulation

• Robust formulation

w∗(x) := min
w ,U

max
ĉ∈U(x)

f (w , ĉ)

s.t. PX ,C (C ∈ U(X )) ≥ 1− α,
(2)

where U : X → ΩY is a uncertainty region predictor

• Assume c ∈ C, where (C, d) is a general metric space

• Let f (w , c) be L-Lipschitz in c under the metric d for any

fixed w
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Problem Formulation

Denote ∆(x , c) := minw maxĉ∈U(x) f (w , ĉ)−minw f (w , c)

Coverage Bound

Consider any f (w , c) that is L-Lipschitz in c under the metric d

for any fixed w . Assume further that PX ,C (C ∈ U(X )) ≥ 1− α.

Then,

PX ,C (0 ≤ ∆(X ,C ) ≤ L diam(U(X ))) ≥ 1− α. (3)
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Conformal Prediction

• Interested in producing calibrated prediction regions:

PX ,Y (Y /∈ C(X )) ≤ α

• D = {(x (1), y (1)), . . . (x (N), y (N))} i.i.d. from P(X ,Y )
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Conformal Prediction

1. Split conformal: D = DT ∪ DC

2. Train a predictor f̂ (x) on DT

3. Define a score function s(x , y): should “act like” a

residual(Ex: s(x , y) = ∥f̂ (x)− y∥)
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Conformal Prediction

4. Evaluate S = {s(x (j), y (j))}NC
j=1 for (x (j), y (j)) ∈ DC

5. Define q̂(α) to be ⌈(NC + 1)(1− α)⌉/NC quantile of S
6. For C(x) = {y | s(x , y) ≤ q̂(α)}, 1− α ≤ PX ,Y (Y ∈ C(X ))
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Optimization

• Wish to solve minw maxĉ∈U(x) f (w , ĉ)

• Rewrite as minw∈W ϕ(w) for ϕ(w) := maxĉ∈C(x) f (w , ĉ)

• ϕ(w) is convex (Danskin’s Theorem)

• Solve via projected gradient descent:

∇wϕ(w) = ∇w f (w , c∗)

where c∗ := maxĉ∈C(x) f (w , ĉ)
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Optimization

• Want to have non-convex prediction regions U(x) to minimize

resulting suboptimality

• Solving c∗ := maxĉ∈C(x) f (w , ĉ) computationally intractable
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Score Function

• Learn conditional generative model q(C | X )

• For a fixed K , define the score

s(x , c) = min
k
{[d (ĉk , c)]}Kk=1 (4)

Figure 1: C(x) =
⋃K

k=1 Bq̂(ĉk) where Bq̂ is a ball of radius q̂ 9



Optimization

• Maximum can efficiently computed as

max
ĉ∈C(x)

f (w , ĉ) = max
k

max
ĉ∈Bq̂(ĉk )

f (w , ĉ) (5)
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Optimization

Algorithm 1 CPO-Opt

1: procedure CPO-Opt

Inputs: Context x , CGM q(C | X ), Optimization steps T ,

Score samples K , Conformal quantile q̂

2: w ∼ U(W), {ĉk}Kk=1 ∼ q(C | x)
3: for t ∈ {1, . . .T} do

4:

{
c∗k ← argmaxĉ∈Bq̂(ĉk )

f (w , ĉ)
}K

k=1
5: c∗ ← argmaxc∗k f (w , c∗k )

6: w ← ΠW(w − η∇w f (w , c∗))

7: end for

8: Return w

9: end procedure
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Results: Traffic Routing

• Robust traffic flow problem (RTFP) for network graph of

Manhattan, where |V| = 4584 and |E| = 9867

• P(Ỹ | x) is probabilistic weather forecaster

• Ỹ is post-processed to get edge cost C
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Results: Traffic Routing

• RTFP formulation similar to knapsack:

w∗(x) := min
w

max
ĉ∈U(x)

ĉTw (6)

s.t.w ∈ [0, 1]E ,Aw = b,PX ,C (C ∈ U(X )) ≥ 1− α,

where we is proportion of traffic routed along edge e,

C ∈ R|E| is the edge weight vector, A ∈ R|V|×|E| is the

node-arc incidence matrix, and b ∈ R|V| has entries

bs = 1, bt = −1, and bk = 0 for k /∈ {s, t}.
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Results: Traffic Routing

Box PTC-B Ellipsoid PTC-E CPO Nominal

Coverage 0.94 0.93 0.94 0.92 0.94 —

Objective 7863.45 (0.0) 34559.03 (171.3) 7038.77 (0.0) 8807.68 (4.22) 4171.22 (321.34) 299.50 (0.0)
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Results: Traffic Routing

Figure 2: Solutions for RTFP under the Box (left) and CPO (right)

regions.
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Questions?

Visit our poster (#983) for more details!
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Optimization

PGD Convergence
Let ϕ(w) := maxĉ∈

⋃K
k=1 Bq̂(ĉk )

f (w , ĉ) for {ĉk}Kk=1 ⊂ C, q̂ ∈ R+,

and f (w , c) convex-concave and L-Lipschitz in c for any fixed w .

Let w∗ ∈ W be a minimizer of ϕ. For any ϵ > 0, define

T := L2||w0−w∗||
ϵ2

and η := ||w0−w∗||
L
√
T

. Then the iterates {wt}Tt=0

returned by Algorithm 1 satisfy

ϕ

(
1

T + 1

T∑
t=0

wt

)
− ϕ(w∗) ≤ ϵ. (7)

• Consequence is “outer” iterations (i.e. T ) has no dependence

on K
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K Selection

• Solely focus attention on choice of K on the “inner”

optimization computational cost,

• maxk ϕk(w) has linearly increasing cost with K

• Must be juxtaposed with the improved statistical efficiency of

such prediction regions
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K Selection

• Inflection point can be determined prior to optimization

• Only requires access to q(C | X ) and test samples to estimate

the prediction region size

• Estimation of the volume of a union of hyperspheres is

complicated due to overlapped regions
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K Selection

• Inflection point can be determined prior to optimization

• Only requires access to q(C | X ) and test samples to estimate

the prediction region size

• Estimation of the volume of a union of hyperspheres is

complicated due to overlapped regions

• Volume estimated using Monte Carlo estimates from Voronoi

cells:

ℓ̂({Bq̂(ĉk)}) := |Bq̂|
K∑

k=1

PC∼U(Bq̂(ĉk ))(C ∈ V (ĉk)), (8)

where C ∼ U(Bq̂(ĉk)) denotes a uniform, |Bq̂| the volume of

a hypersphere of radius q̂, and V (ĉk) the Voronoi cell of ĉk ,

defined as {z ∈ Rd | d(ĉk , z) ≤ d(ĉk ′ , z), k ′ ̸= k}
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K Selection

• Choose K ∗ to be the inflection point

• argminK |ℓ̂K − ℓ̂K+1| ≤ ϵ for some user-specified ϵ volume

tolerance
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K Selection

Algorithm 2 CPO

1: procedure VolumeEst

Inputs: Context x , CGM q(C | X ), Conformal quantile q̂

2: {ĉk}Kk=1 ∼ q(C1:K | x)
3:

{
{ck,m}Mm=1 ∼ U(Bq̂(ĉk))

}K
k=1

4: Return |Bq̂|
∑K

k=1
1
M

∑M
m=1 1 [ck,m ∈ V (ĉk)]

5: end procedure
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K Selection

Algorithm 3 CPO

1: procedure CPO

Inputs: Context x , CGM q(C | X ), Optimization steps T ,

Desired coverage 1− α, Max samples Kmax, Volume Tolerance

ϵ, Calibration sets DC1 ,DC2
2: for K ∈ {1, . . .Kmax} do
3: sK (x , c)← minĉk∈{ĉi}∼q(C1:K |x) [d (ĉk , c)]

4: SK ←
{
sK (x

(i), c(i)) | (x (i), c(i)) ∈ DC1
}

5: q̂K ←
⌈(|DC1 |+1)(1−α)⌉

|DC1 |
quantile of SK

6: ℓ̂K ← 1
|DC2 |

∑|DC2 |
i=1 VolumeEst(x (i), q, q̂K )

7: end for

8: K ∗ ← argminK

∣∣∣ℓ̂K − ℓ̂K+1

∣∣∣ ≤ ϵ

9: Return CPO-Opt(x , q,T ,K ∗, q̂K∗)

10: end procedure
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RPs

• Decisions are hard-to-interpret without intuition on C(x)
• Summarize contents and variability with “representative

points”:

Ξ(x) := argmin
Ξ̂∈ζ

EC∼U(C(x))

[
min
ξ̂(i)∈Ξ̂

d(C , ξ(i))

]
(9)
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RPs

• Requires samples drawn from U(C(x))
• M samples are initially drawn {ck,m}Mm=1 ∼ U(Bq̂(ĉk)) for
each k

• Must be thinned in overlap regions

• Voronoi cells are overlap-free

V (ĉk) := {z ∈ Rd | d(ĉk , z) ≤ d(ĉk ′ , z), k ′ ̸= k}

• Discard {ck,m} ∈ V (ĉk ′) for k ̸= k ′
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RPs

• Size of region around RPs in C(x) gives intuition
• For each RP, look at size of projections {πj}Jj=1, where

J = dim(C) ∣∣∣V (i)
j

∣∣∣ := ∑
c∈V (i)

d2(πj(c), πj(ξ
(i))). (10)

26



Optimization

Algorithm 4 CPO-RPs: QueryBall(T , x , r) is an assumed

subroutine that returns all points in the kd tree T that are within a

radius r of x .
1: procedure CPO-RPs

Inputs: Context x , CGM q(C | X ), RP count N, Conformal

quantile q̂

2: {ĉk}Kk=1 ∼ q(C1:K | x)
3:

{
{ck,m}Mm=1 ∼ U(Bq̂(ĉk))

}K
k=1

4: C ← {ck,m | ck,m ∈ V (ĉk)}K ,M
k=1,m=1

5: T ← KD-Tree(C )

6: E ←
⋃

i{ci ×QueryBall(T , ci , q̂) | ci ∈ T }
7: {Cℓ} ← ConnectedComponents(G(C , E))
8: Ξ←

⋃L
ℓ=1{K-Means++(Cℓ,N

(
|Cℓ|
|C |

)
, d)}

9: Return Ξ

10: end procedure 27



Results: SBI

• Fractional knapsack problem under complex P(C | X ):

w∗(x) := min
w ,U

max
ĉ∈U(x)

−ĉTw (11)

s.t.w ∈ [0, 1]n, pTw ≤ B,PX ,C (C ∈ U(X )) ≥ 1− α,
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Results: SBI

Figure 3: Average volume estimates ℓ̂({Bq̂(ĉ
(i)
k )}) over x (i) ∈ DC2

across SBI benchmarks.
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Results: SBI

• RPs are not unique

• RP objective minimum, however, is unique

• Suboptimality can be assessed by measuring

∆(Ξ, Ξ̂) := EC∼U(C(x))

[
d(C , Ξ̂)− d(C ,Ξ)

]
. (12)
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Results: SBI

Figure 4: Suboptimality of the approximate representative points

∆(Ξ, Ξ̂) decreases over increased sampling from the conformal prediction

region. 31



Results: SBI

Figure 5: Recovery of exact RPs for two moons task
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Results: SBI

Box PTC-B Ellipsoid PTC-E CPO

Gaussian Uniform 0.94 0.96 0.95 0.95 0.95

Gaussian Mixture 0.95 0.93 0.94 0.93 0.94

Bernoulli GLM 0.96 0.95 0.95 0.94 0.94

Lotka Volterra 0.95 0.96 0.94 0.94 0.95

SIR 0.94 0.95 0.93 0.95 0.93

Two Moons 0.93 0.94 0.94 0.94 0.96
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Results: SBI

Box PTC-B Ellipsoid PTC-E CPO Nominal

Gaussian Uniform 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) -0.27 (0.35) -0.43 (0.4) -4.48 (0.56)

Gaussian Mixture 0.0 (0.0) -6.6 (1.67) 0.0 (0.0) -7.38 (1.78) -7.77 (1.87) -11.66 (1.23)

Bernoulli GLM 0.0 (0.0) -0.18 (0.49) 0.0 (0.0) -0.06 (0.25) -0.18 (0.37) -3.53 (0.27)

Lotka Volterra -0.52 (0.02) -0.05 (0.24) -0.02 (0.0) -0.22 (0.18) -0.68 (0.26) -1.88 (0.01)

SIR -0.16 (0.02) -0.22 (0.09) -0.08 (0.01) -0.22 (0.06) -0.38 (0.05) -0.52 (0.02)

Two Moons 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) -0.15 (0.11) -0.38 (0.01)
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Results: Traffic Routing

Figure 6: Two RPs for C(x) for travel time prediction (left) and the

extents of their Voronoi cells (right).
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