Reparameterized Variational Rejection Sampling

Martin Jankowiak

Generate Biomedicines

Du Phan **Google Research**

Consider a latent variable model:

likelihood prior observations latent variable

How do we approximate the posterior? $p_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x})$

 $p_{\theta}(\mathbf{x}, \mathbf{z}) = p_{\theta}(\mathbf{x}|\mathbf{z})p_{\theta}(\mathbf{z})$

How do we compute the evidence?

ſ $p_{\theta}(\mathbf{x}) = \int d\mathbf{z} \ p_{\theta}(\mathbf{x}, \mathbf{z})$

Variational inference casts Bayesian inference as an optimization problem

variational family parameterized by ϕ

approximate posterior

KL divergence

true posterior

space of all distributions

Variational inference casts Bayesian inference as an optimization problem

$\mathcal{L} \equiv \mathbb{E}_{q_{\phi}(\mathbf{z})}[\log p_{\theta}(\mathbf{x}, \mathbf{z}) - \log q_{\phi}(\mathbf{z})] \le \log p_{\theta}(\mathbf{x})$ lower bound variational to log evidence distribution

Concretely we optimize the ELBO variational objective:

Parametric Variational Inference

Asymptotically **biased**

Does estimate evidence

Does support **amortization**

Does support subsampling

Does support model learning

•

27

~

- Asymptotically unbiased Does not estimate evidence Does not support amortization Does not support subsampling Does not support model learning
- How can we get the best of both worlds?

Varieties of variational inference

importance weighting

parametric methods

non-parametric methods leveraging model density $p_{\theta}(\mathbf{x}, \mathbf{z})$

HMC/AIS

rejection sampling

all variational methods

Variational Rejection Sampling

variational distribution

$$r_{\phi,\theta}(\mathbf{z}) \equiv \frac{q_{\phi}(\mathbf{z})a_{\phi,\theta}(\mathbf{z})}{\mathcal{Z}_{r}} \text{ with } \mathcal{Z}_{r} \equiv \int d\mathbf{z} \ q_{\phi}(\mathbf{z})a_{\phi,\theta}(\mathbf{z}) = a_{\phi,\theta}(\mathbf{z}) \equiv \sigma(\log p_{\theta}(\mathbf{x}, \mathbf{z}) - \log q_{\phi}(\mathbf{z}) + T)$$

acceptance probability

Reference: "Variational Rejection Sampling," A. Grover, R. Gummadi, M. Lazaro-Gredilla, D. Schuurmans, & S. Ermon, AISTATS 2018.

Take a parametric proposal distribution $q_{\phi}(z)$ and warp it towards the posterior $p_{\theta}(\mathbf{z}|\mathbf{x})$ via a smoothed form of rejection sampling:

Aside: stochastic gradient estimators

score function gradient estimator

test function

pathwise gradient estimator

$\nabla_{\boldsymbol{\phi}} \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z})} \left[f(\mathbf{z}) \right] = \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z})} \left[f(\mathbf{z}) \nabla_{\boldsymbol{\phi}} \log q_{\boldsymbol{\phi}}(\mathbf{z}) \right]$

Variational Rejection Sampling

VRS uses a high-variance gradient estimator for the parameters of the proposal distribution ϕ

 $\mathcal{A}(\mathbf{z}) \equiv \log p_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{z}) - \log q_{\boldsymbol{\phi}}(\mathbf{z}) - \log a_{\boldsymbol{\phi}, \boldsymbol{\theta}}(\mathbf{z})$

score function $\nabla_{\phi} \mathcal{L} = \operatorname{COV}_{r_{\phi,\theta}(\mathbf{z})} \left[\mathcal{A}(\mathbf{z}), a_{\phi,\theta}(\mathbf{z}) \nabla_{\phi} \log q_{\phi}(\mathbf{z}) \right]$

Reparameterized Variational Rejection Sampling

Proposition 1 If the proposal distribution $q_{\phi}(\mathbf{z})$ is reparameterizable, then the VRS ELBO admits the following reparameterized gradient estimator for ϕ gradients

$$\nabla_{\boldsymbol{\phi}} \mathcal{L} = \mathbb{E}_{r_{\boldsymbol{\phi},\boldsymbol{\theta}}(\mathbf{z})} \left[\left(2\overline{\mathcal{A}}(\mathbf{z}) \frac{\partial a_{\boldsymbol{\phi},\boldsymbol{\theta}}(\mathbf{z})}{\partial \mathbf{z}} \right)^{-1} \right]$$

where $\overline{\mathcal{A}}(\mathbf{z})$ is defined as $\overline{\mathcal{A}}(\mathbf{z}) \equiv \mathcal{A}(\mathbf{z}) - \mathbb{E}_{r_{\phi,\theta}(\mathbf{z}')} [\mathcal{A}(\mathbf{z}')]$ and $\nabla_{\phi} \mathbf{z}$ is the velocity field corresponding to infinitesimal displacement of $q_{\phi}(\mathbf{z})$ in ϕ -space. This reduces to a conventional reparameterized gradient in the limit that $a_{\phi,\theta}(\mathbf{z}) \rightarrow 1$ and $r_{\phi,\theta}(\mathbf{z}) \rightarrow q_{\phi}(\mathbf{z})$.

Logistic Regression Experiment

Summary & Outlook

- RVRS works surprisingly well given its relative simplicity
 Offers an attractive trade-off between computational cost and
- Offers an attractive trade-off k inference fidelity
- Can also be applied to local latent variable models: see paper
 The design space for further hybrid variational inference algorithms
- The design space for further la remains open!

BACKUP SLIDES

Comparing VRS and RVRS gradient variance for a mean-field proposal distribution

Variational Rejection Sampling

Sampling is easy

Algorithm 1 Sampler	
tan	ce probability $a_{\phi,\theta}(\mathbf{z})$
1:	while True do
2:	$\mathbf{z} \sim q_{oldsymbol{\phi}}(\mathbf{z})$
3:	if $u < a_{\phi,\theta}(\mathbf{z})$ w
4:	return \mathbf{z}
5:	end if
6.	end while

The frequency of rejected samples is controlled by T:

r for $r_{\phi,\theta}(\mathbf{z})$. Input: accep- \mathbf{z}) and proposal $q_{\boldsymbol{\phi}}(\mathbf{z})$.

where $u \sim \text{Uniform}(0, 1)$ then

• As $T \to \infty$ we have $a_{\phi,\theta}(\mathbf{z}) \to 1$ and $r_{\phi,\theta}(\mathbf{z}) \to q_{\phi}(\mathbf{z})$ • As $T \to -\infty$ we have $a_{\phi,\theta}(\mathbf{z}) \to 0$ and $r_{\phi,\theta}(\mathbf{z}) \to p_{\theta}(\mathbf{z}|\mathbf{x})$