# IDENTIFYING COPELAND WINNERS IN DUELING BANDITS WITH INDIFFERENCES



### **DUELING BANDITS WITH INDIFFER**

### Setting

- Given: Different arms (options)  $a_1, \ldots, a_n \iff 1, \ldots, n \iff \mathcal{A}$
- Action at time t: Choose a pair of arms  $i_t \in \mathcal{A}$  and  $j_t \in \mathcal{A} \setminus \{i_t\}$
- Observation at time t:

either  $i_t \succ j_t$ , i.e., arm  $i_t$  is strictly preferred over arm  $j_t$ or  $i_t \prec j_t$ , i.e., arm  $j_t$  is strictly preferred over arm  $i_t$ or  $i_t \cong j_t$ , i.e., neither  $i_t$  is strictly preferred over  $j_t$  nor the opposite between  $i_t$  and  $j_t$ )

• Stochastic feedback assumption: Each possible explicit observa mined by one of the following matrices  $P^{\succ}, P^{\prec}, P^{\cong} \in [0, 1]^{n \times n}$ :

$$P_{i_t,j_t}^{\succ} = \mathbb{P}(i_t \succ j_t) \qquad P_{i_t,j_t}^{\prec} = \mathbb{P}(i_t \prec j_t) \qquad P_{i_t,j_t}^{\cong} = \mathbb{P}(i_t \neq j_t)$$

 $\rightarrow$  A problem instance is characterized by  $\mathbf{P} = ((P_{i,j}^{\succ}, P_{i,j}^{\cong}, P_{i,j}^{\prec}))_{i < j}$ 

### Goal

(i) Finding a Copeland winner (COWI), i.e., an element of

$$\mathcal{C}(\mathbf{P}) = \{i \in \mathcal{A} \mid \operatorname{CP}(\mathbf{P}, i) = \max_{j} \operatorname{CP}(\mathbf{P}, j)\},\$$

where

$$\operatorname{CP}(\mathbf{P}, i) = \sum_{j \neq i} \mathbb{1}_{\llbracket P_{i,j}^{\succ} > \max\{P_{i,j}^{\prec}, P_{i,j}^{\cong}\}} + \frac{1}{2} \sum_{j \neq i} \mathbb{1}_{\llbracket P_{i,j}^{\cong} > \max\{P_{i,j}^{\succ}, P_{i,j}^{\boxtimes}\}}$$
is the Copeland score of arm  $i \in \mathcal{A}$ 

(ii) Conducting as few as possible duels (low sample complexity)

| Formal Goal: For a given error              | r bound $\delta \in (0)$ | , 1) design algorithm $A$                                        |
|---------------------------------------------|--------------------------|------------------------------------------------------------------|
| • uses $	au^{A}(\mathbf{P})$ duels in total | such that                | $\mathbb{E}[	au^{\mathrm{A}}(\mathbf{P})]$ is small              |
| • returns $\hat{i} \in \mathcal{A}$         | such that                | $\mathbb{P}(\hat{i} \notin \mathcal{C}(\mathbf{P})) \leq \delta$ |
| for any problem instance $\mathbf{P}$ .     |                          |                                                                  |

### REFERENCES

- [1] Róbert Busa-Fekete, Balázs Szörényi, Paul Weng, Weiwei Cheng, and Eyke Hüllermeier. Top-k selection based on adaptive sampling of noisy preferences. In *Proceedings of the International* Conference on Machine Learning (ICML), pages 1094–1102, 2013.
- [2] Shubham Anand Jain, Rohan Shah, Sanit Gupta, Denil Mehta, Inderjeet J Nair, Jian Vora, Sushil Khyalia, Sourav Das, Vinay J Ribeiro, and Shivaram Kalyanakrishnan. PAC mode estimation using PPR martingale confidence sequences. In International Conference on Artificial Intelligence and Statistics (AISTATS), pages 5815–5852. PMLR, 2022.
- [3] Tanguy Urvoy, Fabrice Clerot, Raphael Féraud, and Sami Naamane. Generic exploration and k-armed voting bandits. In Proceedings of International Conference on Machine Learning *(ICML)*, pages 91–99, 2013.





Viktor Bengs<sup>a,b</sup>, Björn Haddenhorst<sup>c</sup>, Eyke Hüllermeier<sup>a,b</sup>

<sup>a</sup>Institute of Informatics, University of Munich, Germany <sup>b</sup>Munich Center for Machine Learning, Germany <sup>c</sup>Department of Computer Science, Paderborn University

viktor.bengs@lmu.de, eyke@lmu.de, willem.waegeman@UGent.be

## TL;DR

| ENCES                                   | LEARNING ALGO                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | POCOWISTA                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                         | <ul> <li>Idea of POtential COpeland WInner STays Algorit</li> <li>1. Duel arm i<sub>t</sub> having highest potentially Copeland with arm j<sub>t</sub> having highest current Copeland sco</li> <li>2. Conduct duel via efficient PPR-1V1 routine [2] t</li> </ul>                                                                                                                                                                                 |
| e <i>(indifference</i>                  | 1: Input: Set of arms $\mathcal{A}$ , error prob. $\delta \in (0, 1)$ Algorithm         2: Initialization: $e \leftarrow 1$ and for each $i \in \mathcal{A}$ set       1: Input: $D(i) \leftarrow \{i\}$ (set of already compared arms)       2: if $k = \widehat{CP}(i) \leftarrow 0$                                                                                                                                                             |
| ations is deter-                        | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                               |
| $\stackrel{\scriptstyle \prec}{=} j_t)$ | 5: $j_e = \operatorname{argmax}_{j \in \mathcal{A} \setminus D(i_e)} \widehat{CP}(j)$<br>6: $k \leftarrow \operatorname{PPR-1V1}(i_e, j_e, \delta/\binom{n}{2})$<br>7: $\operatorname{SCORES-UPDATE}(i_e, j_e, k)$<br>8: $e \leftarrow e + 1$<br>9: end while<br>10: return $\operatorname{argmax}_{i \in \mathcal{A}} \widehat{CP}(i)$<br>7: $CP(i)$<br>9: $D(i) \leftarrow i_{i_i}$<br>10: $\overline{CP}(i)$<br>11: $\overline{CP}(j)$          |
|                                         | TRA-POCOWISTA                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $P_{i,j}^{\prec} \} ]],$                | What if the problem instance $\mathbf{P}$ is transitive?<br><b>Definition.</b> $\mathbf{P}$ is <i>transitive</i> if for each distinct $i, j, 1$ .<br>Transitivity of strict preference.<br>If $P_{i,j}^{\succ} > \max(P_{i,j}^{\prec}, P_{i,j}^{\cong})$ and $P_{j,k}^{\succ} > \max(P_{j,k}^{\prec}, P_{j,k}^{\cong})$ .<br>2. IP-transitivity.<br>If $P^{\cong} > \max(P^{\prec}, P^{\succeq})$ and $P^{\succ} > \max(P^{\prec}, P^{\cong})$     |
| which                                   | 1. $P_{i,j} > \max(P_{i,j}, P_{i,j}) \text{ and } P_{j,k} > \max(P_{j,k}, P_{j,k})$<br>3. PI-transitivity.<br>If $P_{i,j}^{\succ} > \max\left(P_{i,j}^{\prec}, P_{i,j}^{\cong}\right) \text{ and } P_{j,k}^{\cong} > \max\left(P_{j,k}^{\prec}, P_{j,k}^{\succ}\right)$<br>4. Transitivity of indifference.<br>If $P_{i,j}^{\cong} > \max(P_{i,j}^{\prec}, P_{i,j}^{\succ}) \text{ and } P_{j,k}^{\cong} > \max(P_{j,k}^{\prec}, P_{j,k}^{\succ})$ |
|                                         | $\Rightarrow$ Updates can be made more efficient                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                         | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                            |



Extension of Copeland winner identification in dueling bandits for indifference feedback with novel lower bounds and a worst-case nearly optimal learning algorithm

## **RITHM**

thm (POCOWISTA): SCOLE to find mode of  $(P_{i_t, j_t}^{\succ}, P_{i_t, j_t}^{\cong}, P_{i_t, j_t}^{\prec})$ m Scores-Update Arms *i*, *j*, ternary decision  $k \in \{1, 2, 3\}$ 1then

 $(i) \leftarrow \widehat{CP}(i) + 1$ k = 2 then  $(i) \leftarrow \widehat{CP}(i) + \frac{1}{2}, \ \widehat{CP}(j) \leftarrow \widehat{CP}(j) + \frac{1}{2}$ 

 $C(j) \leftarrow \widehat{CP}(j) + 1$ 

 $D(i) \cup \{j\}, D(j) \leftarrow D(j) \cup \{i\}$  $(\leftarrow n - |D(i)| + \widehat{CP}(i))$  $(\leftarrow n - |D(j)| + \widehat{CP}(j))$ 

 $k \in \mathcal{A}$  holds:

), then  $P_{i,k}^{\succ} > \max(P_{i,k}^{\prec}, P_{i,k}^{\cong})$ .

, then  $P_{i,k}^{\succ} > \max(P_{i,k}^{\prec}, P_{i,k}^{\cong})$ .

 $(k_k)$ , then  $P_{i,k}^{\succ} > \max\left(P_{i,k}^{\prec}, P_{i,k}^{\cong}\right)$ .

), then  $P_{i,k}^{\cong} > \max(P_{i,k}^{\prec}, P_{i,k}^{\succ}).$ 



teps as line 10 and 11 in Score-Update

# THEORETICAL RESULTS

Lower bounds **Informal Version:** For **P** with m

where  $P_{i,j}^{(1)}, P_{i,j}^{(2)}, P_{i,j}^{(3)}$  are the order

Formal Version: If A correctly  $\mathbb{E}[\tau^{A}(\mathbf{P})] \geq \ln \frac{1}{2}$ 

where  $\mathcal{C}(\mathbf{P}) = \{i^*\}$  and in the ca  $D_{j,k}(\mathbf{P}) \coloneqq \max\{\mathrm{KL}_{j,k}^{(1)}, \mathrm{KL}_{j,k}^{(2)}\}$  $\mathrm{KL}_{j,k}^{(1)} = \mathrm{KL}((P_{j,k}^{\succ}, P_{j,k}^{\cong}, P_{j})$  $\operatorname{KL}_{j,k}^{(2)} = \operatorname{KL}((P_{j,k}^{\succ}, P_{j,k}^{\cong}, P_{j}^{\cong})$  $C_j = \max_{(i,l)\in\Psi(j)} \frac{1}{\binom{|I(j)|-1}{i-1}\binom{|L(j)|}{l}}$  $\Psi(j) \coloneqq \{(i,l) \in \{0,\ldots,$ for any **P** with  $\min_{j,k} \min\{P_{j,k}^{\succ}, P\}$ 

### Upper bounds

**Informal Version:** Worst-case sample complexities have the order POCOWISTA TRA-POCOWISTA\* SAVAGE\*\* [3] PBR-CCSO\*\* [1]  $\frac{n}{\Delta_{i,j}^2} \ln\left(\frac{n}{\sqrt{\delta}} \cdot \frac{1}{\Delta_{i,j}}\right) \qquad \frac{n^2}{\Delta_{i,j}^2} \ln\left(\frac{n}{\delta} \cdot \frac{1}{\Delta_{i,j}}\right) \qquad \frac{n^2}{\Delta_{i,j}^2} \ln\left(\frac{n^2}{\delta} \cdot \frac{1}{\Delta_{i,j}}\right)$  $\frac{n^2}{\Delta_{i,j}^2} \ln \left( \frac{n}{\sqrt{\delta}} \cdot \frac{1}{\Delta_{i,j}} \right)$ 

\*if **P** is transitive \*\* if there are no indifferences

**Formal Version:** For any  $\mathbf{P} = ((P_{i,j}^{\succ}, P_{i,j}^{\cong}, P_{i,j}^{\prec}))_{i < j}$ , such that there exists no pair  $i, j \in \mathcal{A}$  with  $i \neq j$  and  $P_{i,j}^{\succ} = P_{j,i}^{\succ} = 1/3$ , it holds (i) for A := POCOWISTA that  $\mathbb{P}(\hat{i}_{A} \in \mathcal{C}(\mathbf{P}) \text{ and } \tau^{A}(\mathbf{P}) \leq t(\mathbf{P}, \delta)) \geq 1 - \delta,$ where  $t(\mathbf{P}, \delta) \leq \sum_{i < j} t_0 \left( (P_{i,j}^{\succ}, P_{i,j}^{\cong}, P_{i,j}^{\prec}), \delta / {n \choose 2} \right)$ ,  $t_0((p_1, p_2, p_3), \delta) = \frac{c_1 p_{(1)}}{(p_{(1)} - p_{(2)})^2} \ln\left(\frac{\sqrt{2c_2}p_{(1)}}{\sqrt{\delta(p_{(1)} - p_{(2)})}}\right),$ (1) $p_{(1)} \ge p_{(2)} \ge p_{(3)}$  is the order statistic of  $p_1, p_2, p_3, c_1 = 194.07$ , and  $c_2 = 79.86$ . (ii) for A := TRA-POCOWISTA if **P** transitive that  $\mathbb{P}(\hat{i}_{A} \in \mathcal{C}(\mathbf{P}) \text{ and } \tau^{A}(\mathbf{P}) \leq \tilde{t}(\mathbf{P}, \delta)) \geq 1 - \delta,$ where  $\tilde{t}(\mathbf{P}, \delta) = \sum_{e=1}^{E} t_0((P_{i_e, j_e}^{\succ}, P_{i_e, j_e}^{\cong}, P_{i_e, j_e}^{\prec}), \delta/n), t_0 \text{ is as in } (1) \text{ and } E \leq n.$ 

$$\begin{split} & \min_{i < j} |P_{i,j}^{(1)} - P_{i,j}^{(2)}| > \Delta \text{ the lower bounds are} \\ & \Omega(n^2/\Delta^2 \ln 1/\delta), \end{split}$$
  
or statistics of  $P_{i,j}^{\succ}, P_{i,j}^{\cong}$  and  $P_{i,j}^{\prec}. \end{split}$   
identifies the COWI with confidence  $1 - \delta$ , then  
 $\frac{1}{4\delta} \sum_{j \in \mathcal{A} \setminus \{i^*\}} C_j \min_{k \in L(j) \cup I(j)} \frac{1}{D_{j,k}(\mathbf{P})}, \end{aligned}$   
as with indifferences  
 $\binom{2}{k}_k$   
 $\underset{i,k}{\prec}, (P_{j,k}^{\cong}, P_{j,k}^{\succ}, P_{j,k}^{\prec})), \newline \underset{i,k}{\leftarrow} (\binom{|I(j)|}{l} \binom{|I(j)|}{l}, \binom{|I(j)|}{l} \binom{|I(j)|}{$