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TL;DR

Extension of Copeland winner identification in dueling bandits for indifference feedback with novel lower bounds and a worst-case nearly optimal learning algorithm

DUELING BANDITS WITH INDIFFERENCES

Setting

•Given: Different arms (options) a1, . . . , an ⇐⇒ 1, . . . , n ⇐⇒ A
•Action at time t: Choose a pair of arms it ∈ A and jt ∈ A \ {it}
•Observation at time t:

either it ≻ jt, i.e., arm it is strictly preferred over arm jt
or it ≺ jt, i.e., arm jt is strictly preferred over arm it
or it ∼= jt, i.e., neither it is strictly preferred over jt nor the opposite (indifference
between it and jt)

• Stochastic feedback assumption: Each possible explicit observations is deter-
mined by one of the following matrices P≻, P≺, P

∼= ∈ [0, 1]n×n :

P≻
it,jt

= P(it ≻ jt) P≺
it,jt

= P(it ≺ jt) P
∼=
it,jt

= P(it ∼= jt)

;A problem instance is characterized by P = ((P≻
i,j, P

∼=
i,j, P

≺
i,j))i<j

Goal

(i) Finding a Copeland winner (COWI), i.e., an element of

C(P) = {i ∈ A |CP(P, i) = maxj CP(P, j)},
where

CP(P, i) =
∑

j ̸=i
1JP≻

i,j>max{P≺
i,j,P

∼=
i,j}K +

1
2

∑
j ̸=i

1JP∼=
i,j>max{P≻

i,j,P
≺
i,j}K,

is the Copeland score of arm i ∈ A
(ii) Conducting as few as possible duels (low sample complexity)

Formal Goal: For a given error bound δ ∈ (0, 1) design algorithm A which

• uses τA(P) duels in total

• returns î ∈ A
such that

such that

E[τA(P)] is small

P(̂i /∈ C(P)) ≤ δ

for any problem instance P.
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LEARNING ALGORITHM

POCOWISTA

Idea of POtential COpeland WInner STays Algorithm (POCOWISTA):
1. Duel arm it having highest potentially Copeland score

with arm jt having highest current Copeland score
2. Conduct duel via efficient PPR-1V1 routine [2] to find mode of

(
P≻
it,jt

, P
∼=
it,jt

, P≺
it,jt

)

TRA-POCOWISTA

What if the problem instance P is transitive?
Definition. P is transitive if for each distinct i, j, k ∈ A holds:
1. Transitivity of strict preference.
If P≻

i,j > max(P≺
i,j, P

∼=
i,j) and P≻

j,k > max(P≺
j,k, P

∼=
j,k), then P≻

i,k > max(P≺
i,k, P

∼=
i,k).

2. IP-transitivity.
If P

∼=
i,j > max(P≺

i,j, P
≻
i,j) and P≻

j,k > max(P≺
j,k, P

∼=
j,k), then P≻

i,k > max(P≺
i,k, P

∼=
i,k).

3. PI-transitivity.
If P≻

i,j > max
(
P≺
i,j, P

∼=
i,j

)
and P

∼=
j,k > max

(
P≺
j,k, P

≻
j,k

)
, then P≻

i,k > max
(
P≺
i,k, P

∼=
i,k

)
.

4. Transitivity of indifference.
If P

∼=
i,j > max(P≺

i,j, P
≻
i,j) and P

∼=
j,k > max(P≺

j,k, P
≻
j,k), then P

∼=
i,k > max(P≺

i,k, P
≻
i,k).

⇒ Updates can be made more efficient

THEORETICAL RESULTS

Lower bounds

Informal Version: For P with mini<j |P (1)
i,j − P

(2)
i,j | > ∆ the lower bounds are

Ω(n2/∆2 ln 1/δ),

where P
(1)
i,j , P

(2)
i,j , P

(3)
i,j are the order statistics of P≻

i,j, P
∼=
i,j and P≺

i,j.

Formal Version: If A correctly identifies the COWI with confidence 1− δ, then

E[τA(P)] ≥ ln 1
2.4δ

∑
j∈A\{i∗}

Cj min
k∈L(j)∪I(j)

1
Dj,k(P),

where C(P) = {i∗} and in the case with indifferences

Dj,k(P) := max{KL(1)
j,k,KL

(2)
j,k}

KL
(1)
j,k = KL((P≻

j,k, P
∼=
j,k, P

≺
j,k), (P

∼=
j,k, P

≻
j,k, P

≺
j,k)),

KL
(2)
j,k = KL((P≻

j,k, P
∼=
j,k, P

≺
j,k), (P

≺
j,k, P

∼=
j,k, P

≻
j,k)),

Cj = max
(i,l)∈Ψ(j)

(|I(j)|i )(
|L(j)|

l )
(|I(j)|−1

i−1 )(|L(j)|l )1Ji≥1K+(|I(j)|i )(
|L(j)|−1

l−1 )1Jl≥1K
,

Ψ(j) :=
{
(i, l) ∈ {0, . . . , |I(j)|} × {0, . . . , |L(j)|} | i + 2l ≥ 2dj + 1

}
for any P with minj,kmin{P≻

j,k, P
∼=
j,k, P

≺
j,k} > 0.

Upper bounds

Informal Version: Worst-case sample complexities have the order

POCOWISTA TRA-POCOWISTA∗ SAVAGE∗∗ [3] PBR-CCSO∗∗ [1]
n2

∆2
i,j
ln
(

n√
δ
· 1
∆i,j

)
n
∆2

i,j
ln
(

n√
δ
· 1
∆i,j

)
n2

∆2
i,j
ln
(
n
δ ·

1
∆i,j

)
n2

∆2
i,j
ln
(
n2

δ · 1
∆i,j

)
∗if P is transitive
∗∗ if there are no indifferences

Formal Version: For any P = ((P≻
i,j, P

∼=
i,j, P

≺
i,j))i<j, such that there exists no pair

i, j ∈ A with i ̸= j and P≻
i,j = P≻

j,i = 1/3, it holds
(i) for A := POCOWISTA that

P
(
îA ∈ C(P) and τA(P) ≤ t(P, δ)

)
≥ 1− δ,

where t(P, δ) ≤
∑

i<j t0
(
(P≻

i,j, P
∼=
i,j, P

≺
i,j), δ/(

n
2)
)
,

t0
(
(p1, p2, p3), δ

)
=

c1p(1)
(p(1)−p(2))2

ln
( √

2 c2p(1)√
δ(p(1)−p(2))

)
, (1)

p(1) ≥ p(2) ≥ p(3) is the order statistic of p1, p2, p3, c1 = 194.07, and c2 = 79.86.
(ii) for A := TRA-POCOWISTA if P transitive that

P
(
îA ∈ C(P) and τA(P) ≤ t̃(P, δ)

)
≥ 1− δ,

where t̃(P, δ) =
∑E

e=1 t0
(
(P≻

ie,je
, P

∼=
ie,je

, P≺
ie,je

), δ/n
)
, t0 is as in (1) and E ≤ n.


