

TL;DR

Extension of Copeland winner identification in dueling bandits for indifference feedback with novel lower bounds and a worst-case nearly optimal learning algorithm

DUELING BANDITS WITH INDIFFERENCES

LEARNING ALGORITHM

Setting

- Given: Different arms (options) $a_{1}, \ldots, a_{n} \Longleftrightarrow 1, \ldots, n \Longleftrightarrow \mathcal{A}$
- Action at time t : Choose a pair of arms $i_{t} \in \mathcal{A}$ and $j_{t} \in \mathcal{A} \backslash\left\{i_{t}\right\}$
- Observation at time t :
either $i_{t} \succ j_{t}$, i.e., arm i_{t} is strictly preferred over arm j_{t}
or $i_{t} \prec j_{t}$, i.e., arm j_{t} is strictly preferred over arm i_{t}
or $i_{t} \cong j_{t}$, i.e., neither i_{t} is strictly preferred over j_{t} nor the opposite (indifference between i_{t} and j_{t})
- Stochastic feedback assumption: Each possible explicit observations is determined by one of the following matrices $P^{\succ}, P^{\prec}, P^{\cong} \in[0,1]^{n \times n}$

$$
P_{i_{t, j}, j_{t}}^{\succ}=\mathbb{P}\left(i_{t} \succ j_{t}\right) \quad P_{i, j_{t}}^{\prec}=\mathbb{P}\left(i_{t} \prec j_{t}\right) \quad P_{i_{t, j}, j_{t}}^{\simeq}=\mathbb{P}\left(i_{t} \cong j_{t}\right)
$$

\leadsto A problem instance is characterized by $\mathbf{P}=\left(\left(P_{i, j}^{\succ}, P_{i, j}^{\simeq}, P_{i, j}^{\prec}\right)\right)_{i<j}$
Goal
i) Finding a Copeland winner (COWI), i.e., an element of

$$
\mathcal{C}(\mathbf{P})=\left\{i \in \mathcal{A} \mid \mathrm{CP}(\mathbf{P}, i)=\max _{j} \mathrm{CP}(\mathbf{P}, j)\right\},
$$

where

$$
\mathrm{CP}(\mathbf{P}, i)=\sum_{j \neq i} 1_{\llbracket P_{i, j}^{\gtrless}>\max \left\{P_{i, j}^{\gtrless}, P_{i, j}^{\approx}\right\} \rrbracket}+\frac{1}{2} \sum_{j \neq i} 1_{\llbracket P_{i, j}^{\approx}>\max \left\{P_{i, j}^{\gtrless}, P_{i, j}^{\gtrless}\right\} \rrbracket},
$$

is the Copeland score of arm $i \in \mathcal{A}$
(ii) Conducting as few as possible duels (low sample complexity)

Formal Goal: For a given error bound $\delta \in(0,1)$ design algorithm A which

- uses $\tau^{\mathrm{A}}(\mathbf{P})$ duels in total	such that	$\mathbb{E}\left[\tau^{\mathrm{A}}(\mathbf{P})\right]$ is small
- returns $\hat{i} \in \mathcal{A}$	such that	$\mathbb{P}(\hat{i} \notin \mathcal{C}(\mathbf{P})) \leq \delta$

- returns $\hat{i} \in \mathcal{A}$
such that $\quad \mathbb{P}(\hat{i} \neq \mathcal{C}(\mathbf{P})) \leq \delta$
for any problem instance \mathbf{P}

REFERENCES

Intelligence and Statisticics (AISTATS), pages 5815 -5852. PMLR, 2022

