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Robust DNN Training

* Training DNN involves optimizing over highly over-parameterized , non-
convex loss landscape.

* (Gross Corruption) Adversary can replace 0 <y < 1/2 fraction of them with

arbitrary points. If G and B are sets of good and bad points « = :g: = w‘fl <1

* smooth non-convex problems with finite sum structure, under gross
corruption, without any prior knowledge about the malicious samples.
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SGD under gross corruption

1
* SGD proceeds as follows :  xi1:=x-+8", ¥ = 8 > Vi),
€D,

* Even a single corrupt sample can lead SGD to an arbitrarily poor solution.
* This can be attributed to the linear gradient aggregation step.

* Breakdown Point: smallest fraction of contamination that must be
introduced to cause an estimator to produce arbitrarily wrong estimates.

* SGD has lowest possible asymptotic breakdown of O under gross
corruption. Consider a single malicious gradient: & = -Y..p,; 8"



Robust Gradient Aggregation

* Make SGD Robust Again: Replace Mean with Robust Mean Estimator

e Geometric Median:  x.=GMm({x;}) = argmin [g(x) =Y |ly- xiH}
=1
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e Achieves Optimal Breakdown point of /- .

Clean Data 30% Corruption 45% Corruption

2 1 O e Y Mean 2 SR e Y Mean
-6.0 % Co-Med * Co-Med
Y Geo-Med Y Geo-Med
0 i 0 Fimmed M
65 Y Timmed Mean Y Timmed Mean
' + Norm Clip Y Norm Clip
-2 Krum 2 Krum
o -7.0 ~ Tue Mea ~ ‘ Tue Me
x
-4 4
-75 ‘)&
| e, L e,
-85 8 &y s »
T : r : r ! ! ! | 1 ! 1 : T T T T T T
21 22 23 24 25 19 20 21 22 23 24 25 19 20 21 22 23 24 25

x1 x1 x1

This Toy example in 2 dimensions demonstrates the superior robustness properties of GM
for estimating the aggregated gradient even in presence of heavy corruption.



Geometric Median Descent

* GM-SGD @ X¢41 = Xc—NGe, e = GM({gi})
* Unfortunately, finding GM is computationally hard.

* Best known algorithm to find € — approximate GM i.e. 9(x) < (1 +¢€)g(x.)
of n points in Rdrequires O(d /e?).

* GM-SGD is for optimization in high
dimensions arising from DNN e.g. d = 60M Alexnet, d = 175B GPT3



Block Coordinate GM Descent

* DNNs are over-parameterized

* Performing gradient aggregation in low dimensional subspace should have /itt/e
impact in the downstream optimization task.

e Judiciously subset a block of k dimensions (k << d) and perform GM in Rk

o ldeally, select k dimensions resulting in largest decrease loss - NP Hard ®
o Select k columns with largest total norm from

* k << d can imply large information loss resulting in slower convergence.
o Keep track of Residual and add back to gradient estimate.
o Fixes sampling bias and retains convergence.



Theoretical Guarantee

* Non-convex and Smooth : Suppose f; corresponding to non-corrupt

samplesi.e. i € G are L smooth and non-convex. Run BGMD with €

. 1, .
approximate GM oracle and y = -~ in presence of a corruption for T

iterations. Sample any iteration T uniformly at random then:
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Algorithm Aggregation Operator™ Iteration Complexity' Breakdown Point'*
SGD MEAN(-) O(bd) 0
(Yang et all, 2019; Yin et al, |2018) CmM(-) O(bdlogb) 1/2
(Wu et al!, 2020) GM(+) O(de™? + bd) 1/2
BGmD (This work) BGM(+) O(ke™? + bd) 1/2
(Data and Diggavi, 2020) (Steinhardt et all, 2017) O(db® min(d, b) + bd) 1/4
(Blanchard et al., 2017) Krum(+) O(b*d) 18]
(Yin et al, 2018) CTwmgp(+) O(bd(1 — 28) + bdlogb) | 3]

(Ghosh et ali, 2019; Gupta et al., 2020) Ncg(+) O(bd(2 — B) + blogb) 18]




Empirical Evidence : Feature Corruption

* Feature Corruption Simulation

o Huber’s Contamination: z; ~ N (100,1) directly added to the images.

o Impulse Corruption: Salt and Pepper noise added by setting 90% of pixels to O or 1.
o Gaussian Blur: Kernel size (5,5) and o = 100.
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(a) No corruption (b) 10% Corruption (c) 20% Corruption (d) 40% Corruption

Top (L: Clean, R: Huber’s Contamination). Test accuracy as a function of wall clock time for training Fashion-MNIST using
Bottom(L: Impulse, R: Gaussian Blur). LeNet (1.16 M params) in presence of impulse noise.



