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Robust DNN Training
• Training DNN involves optimizing over highly over-parameterized , non-

convex loss landscape. 

• (Gross Corruption) Adversary can replace 0 ≤ 𝜓 ≤ 1/2 fraction of them with 
arbitrary points. If G and B are sets of good and bad points 𝛼 = |"|

|#|
= $

$%&
≤ 1

• smooth non-convex problems with finite sum structure, under gross 
corruption, without any prior knowledge about the malicious samples.



SGD under gross corruption
• SGD proceeds as follows : 

• Even a single corrupt sample can lead SGD to an arbitrarily poor solution.
• This can be attributed to the linear gradient aggregation step.

• Breakdown Point:  smallest fraction of contamination that must be 
introduced to cause an estimator to produce arbitrarily wrong estimates.

• SGD has lowest possible asymptotic breakdown of 0 under gross 
corruption. Consider a single malicious gradient: 



Robust Gradient Aggregation
• Make SGD Robust Again:  Replace Mean with Robust Mean Estimator

• Geometric Median:

• Achieves Optimal Breakdown point of ½ .

This Toy example in 2 dimensions demonstrates the superior robustness properties of GM 
for estimating the aggregated gradient even in presence of heavy corruption.



Geometric Median Descent

• GM-SGD :  𝑥)*+ = x,− 𝜂 &𝑔) , &𝑔) = GM({g-})

• Unfortunately, finding GM is computationally hard. 

• Best known algorithm to find 𝜖 − approximate GM i.e.
of n points in Rd requires O(𝑑/𝜖.).  

• GM-SGD is computationally intractable for optimization in high 
dimensions arising from DNN e.g. 𝑑 ≈ 60M Alexnet, 𝑑 ≈ 175B GPT3 



Block Coordinate GM Descent
• DNNs are over-parameterized 

• Performing gradient aggregation in low dimensional subspace should have little 
impact in the downstream optimization task. 

• Judiciously subset a block of k dimensions (k << d) and perform GM in Rk

o Ideally, select k dimensions resulting in largest decrease loss - NP Hard L
o Select k columns with largest total norm from 

• k << d can imply large information loss resulting in slower convergence.
oKeep track of Residual and add back to gradient estimate.
o Fixes sampling bias and retains convergence. 



Theoretical Guarantee
• Non-convex and Smooth : Suppose 𝑓/ corresponding to non-corrupt 

samples i.e. 𝑖 ∈ 𝐺 are 𝐿 smooth and non-convex. Run BGMD with 𝜖
approximate GM oracle and 𝛾 = +

.0
in presence of 𝛼 corruption for 𝑇

iterations. Sample any iteration 𝜏 uniformly at random then:



Empirical Evidence : Feature Corruption
• Feature Corruption Simulation

oHuber’s Contamination: 𝑧! ∼ 𝒩 100, 1 directly added to the images.
o Impulse Corruption: Salt and Pepper noise added by setting 90% of pixels to 0 or 1.
oGaussian Blur: Kernel size (5,5) and 𝜎 = 100. 

Top (L: Clean, R: Huber’s Contamination). 
Bottom(L: Impulse, R: Gaussian Blur).

Test accuracy as a function of wall clock time for training Fashion-MNIST using 
LeNet (1.16 M params) in presence of impulse noise. 


