Differentially Private Federated Learning on Heterogeneous Data

Utility & Privacy tradeoffs

Maxence Noble ¹

Joint work with Aymeric Dieuleveut ¹ and Aurélien Bellet ²

¹CMAP, École Polytechnique, France; ²MAGNET Team, INRIA, France

Table of contents

On Federated Learning and Privacy

Theoretical results

Numerical experiments

On Federated Learning and Privacy

Issues at stake

Issues at stake

Centralized Federated Learning

• users collaboratively train one ML model via one server.

Issues at stake

- users collaboratively train one ML model via one server.
- each user's dataset is kept private and decentralized.

- users collaboratively train one ML model via one server.
- each user's dataset is kept private and decentralized.
- the simplest SGD baseline: FedAvg ([5], 2017).

- users collaboratively train one ML model via one server.
- each user's dataset is kept private and decentralized.
- the simplest SGD baseline: FedAvg ([5], 2017).
- 1. Facing the challenge of heterogeneity between users

- users collaboratively train one ML model via one server.
- each user's dataset is kept private and decentralized.
- the simplest SGD baseline: FedAvg ([5], 2017).

1. Facing the challenge of heterogeneity between users

• non i.i.d data and/or divergence in local "true" models.

- users collaboratively train one ML model via one server.
- each user's dataset is kept private and decentralized.
- the simplest SGD baseline: FedAvg ([5], 2017).

1. Facing the challenge of heterogeneity between users

- non i.i.d data and/or divergence in local "true" models.
- SCAFFOLD ([4], 2020): use of control variates to correct the direction of local gradients.

- users collaboratively train one ML model via one server.
- each user's dataset is kept private and decentralized.
- the simplest SGD baseline: FedAvg ([5], 2017).

1. Facing the challenge of heterogeneity between users

- non i.i.d data and/or divergence in local "true" models.
- SCAFFOLD ([4], 2020): use of control variates to correct the direction of local gradients.

2. Facing the challenge of privacy

- users collaboratively train one ML model via one server.
- each user's dataset is kept private and decentralized.
- the simplest SGD baseline: FedAvg ([5], 2017).

1. Facing the challenge of heterogeneity between users

- non i.i.d data and/or divergence in local "true" models.
- SCAFFOLD ([4], 2020): use of control variates to correct the direction of local gradients.

2. Facing the challenge of privacy

towards the server or a third party.

- users collaboratively train one ML model via one server.
- each user's dataset is kept private and decentralized.
- the simplest SGD baseline: FedAvg ([5], 2017).

1. Facing the challenge of heterogeneity between users

- non i.i.d data and/or divergence in local "true" models.
- SCAFFOLD ([4], 2020): use of control variates to correct the direction of local gradients.

2. Facing the challenge of privacy

- towards the server or a third party.
- Differential Privacy (DP) [2]: statistical approach to hide *individual* contributions to the dataset by adding noise to gradients.

- users collaboratively train one ML model via one server.
- each user's dataset is kept private and decentralized.
- the simplest SGD baseline: FedAvg ([5], 2017).

1. Facing the challenge of heterogeneity between users

- non i.i.d data and/or divergence in local "true" models.
- SCAFFOLD ([4], 2020): use of control variates to correct the direction of local gradients.

2. Facing the challenge of privacy

- towards the server or a third party.
- Differential Privacy (DP) [2]: statistical approach to hide *individual* contributions to the dataset by adding noise to gradients.
- DP level is ensured by a budget $(\epsilon, \delta) \in \mathbb{R}^{*2}_+$ (the lower, the better).

Related work

Related work

- versions of DP-FedAvg [6, 3, 8], mostly without theoretical analysis.
- no approach designed to tackle data heterogeneity with DP.

Related work

- versions of DP-FedAvg [6, 3, 8], mostly without theoretical analysis.
- no approach designed to tackle data heterogeneity with DP.

Our results: expressing utility and privacy guarantees for federated learning with fine results of DP theory [7], considering

Related work

- versions of DP-FedAvg [6, 3, 8], mostly without theoretical analysis.
- no approach designed to tackle data heterogeneity with DP.

Our results: expressing utility and privacy guarantees for federated learning with fine results of DP theory [7], considering

• heterogeneity issues between users,

Related work

- versions of DP-FedAvg [6, 3, 8], mostly without theoretical analysis.
- no approach designed to tackle data heterogeneity with DP.

Our results: expressing utility and privacy guarantees for federated learning with fine results of DP theory [7], considering

- heterogeneity issues between users,
- convex and non-convex objective functions.

Related work

- versions of DP-FedAvg [6, 3, 8], mostly without theoretical analysis.
- no approach designed to tackle data heterogeneity with DP.

Our results: expressing utility and privacy guarantees for federated learning with fine results of DP theory [7], considering

- heterogeneity issues between users,
- convex and non-convex objective functions.

Our algorithm: DP-SCAFFOLD(-warm)

Related work

- versions of DP-FedAvg [6, 3, 8], mostly without theoretical analysis.
- no approach designed to tackle data heterogeneity with DP.

Our results: expressing utility and privacy guarantees for federated learning with fine results of DP theory [7], considering

- heterogeneity issues between users,
- convex and non-convex objective functions.

Our algorithm: DP-SCAFFOLD(-warm)

ullet using gradient perturbation via Gaussian noise with scale σ_g ,

Related work

- versions of DP-FedAvg [6, 3, 8], mostly without theoretical analysis.
- no approach designed to tackle data heterogeneity with DP.

Our results: expressing utility and privacy guarantees for federated learning with fine results of DP theory [7], considering

- heterogeneity issues between users,
- convex and non-convex objective functions.

Our algorithm: DP-SCAFFOLD(-warm)

- using gradient perturbation via Gaussian noise with scale σ_g ,
- taking advantage of control variates,

Related work

- versions of DP-FedAvg [6, 3, 8], mostly without theoretical analysis.
- no approach designed to tackle data heterogeneity with DP.

Our results: expressing utility and privacy guarantees for federated learning with fine results of DP theory [7], considering

- heterogeneity issues between users,
- convex and non-convex objective functions.

Our algorithm: DP-SCAFFOLD(-warm)

- ullet using gradient perturbation via Gaussian noise with scale σ_g ,
- taking advantage of control variates,
- ullet fairly comparing our results to DP-FedAvg (σ_g) performance.

We provide two main results in our article.

We provide two main results in our article.

Privacy analysis

We provide two main results in our article.

Privacy analysis

• with the same scale of noise σ_g^* , DP-SCAFFOLD and DP-FedAvg are both $(O(\epsilon), \delta)$ -DP w.r.t. the whole dataset towards any third party.

We provide two main results in our article.

Privacy analysis

• with the same scale of noise σ_g^* , DP-SCAFFOLD and DP-FedAvg are both $(O(\epsilon), \delta)$ -DP w.r.t. the whole dataset towards any third party.

Utility analysis

We provide two main results in our article.

Privacy analysis

• with the same scale of noise σ_g^* , DP-SCAFFOLD and DP-FedAvg are both $(O(\epsilon), \delta)$ -DP w.r.t. the whole dataset towards any third party.

Utility analysis

ullet if $\sigma_g = \sigma_g^*$, DP-SCAFFOLD-warm converges faster than DP-FedAvg,

We provide two main results in our article.

Privacy analysis

• with the same scale of noise σ_g^* , DP-SCAFFOLD and DP-FedAvg are both $(O(\epsilon), \delta)$ -DP w.r.t. the whole dataset towards any third party.

Utility analysis

- \bullet if $\sigma_g = \sigma_g^*$, DP-SCAFFOLD-warm converges faster than DP-FedAvg,
- the proof for DP-FedAvg relies on an extra assumption on gradients.

We provide two main results in our article.

Privacy analysis

• with the same scale of noise σ_g^* , DP-SCAFFOLD and DP-FedAvg are both $(O(\epsilon), \delta)$ -DP w.r.t. the whole dataset towards any third party.

Utility analysis

- if $\sigma_g = \sigma_g^*$, DP-SCAFFOLD-warm converges faster than DP-FedAvg,
- the proof for DP-FedAvg relies on an extra assumption on gradients.

We highlight theoretical trade-offs in our convergence bounds involving

- terms of heterogeneity,
- terms of **privacy** (ϵ, δ) ,
- terms from the **federated** framework (number of users, number of communication rounds, number of local SGD updates, sampling...).

Numerical experiments

Figure 1: Test Accuracy on synthetic data (Logistic regression)

Experiments (heterogeneity increasing from left to right)

Figure 1: Test Accuracy on synthetic data (Logistic regression)

Figure 2: Test Accuracy on MNIST [1] data (Neural network, one hidden layer)

Differentially Private Federated Learning on Heterogeneous Data

Utility & Privacy tradeoffs

Maxence Noble 1

Joint work with Aymeric Dieuleveut ¹ and Aurélien Bellet ²

¹CMAP, École Polytechnique, France; ²MAGNET Team, INRIA, France

References

- [1] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist: Extending mnist to handwritten letters. In 2017 international joint conference on neural networks (IJCNN), pages 2921–2926. IEEE, 2017.
- [2] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Foundations and Trends® in Theoretical Computer Science, 9(3-4):211–407, 2014.
- [3] Robin C. Geyer, Tassilo Klein, and Moin Nabi. Differentially private federated learning: A client level perspective. arXiv preprint arXiv:1712.07557, 2017.
- [4] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In *International Conference on Machine Learning*, pages 5132–5143. PMLR, 2020.
- [5] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-efficient learning of deep networks from decentralized data. In *Artificial intelligence and statistics*, pages 1273–1282. PMLR, 2017.
- [6] H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially private recurrent language models. In *International Conference on Learning Representations*, 2018.
- [7] Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th computer security foundations symposium (CSF), pages 263–275. IEEE, 2017.
- [8] Aleksei Triastcyn and Boi Faltings. Federated learning with bayesian differential privacy. In 2019 IEEE International Conference on Big Data (Big Data), pages 2587–2596. IEEE, 2019.