
Differentially Private Federated Learning on
Heterogeneous Data

Utility & Privacy tradeoffs

Maxence Noble 1

Joint work with Aymeric Dieuleveut 1 and Aurélien Bellet 2

1CMAP, École Polytechnique, France; 2MAGNET Team, INRIA, France

1 / 7



Table of contents

On Federated Learning and Privacy

Theoretical results

Numerical experiments

2 / 7



On Federated Learning and
Privacy



Issues at stake

Centralized Federated Learning

• users collaboratively train one ML model via one server.
• each user’s dataset is kept private and decentralized.
• the simplest SGD baseline: FedAvg ([5], 2017).

1. Facing the challenge of heterogeneity between users

• non i.i.d data and/or divergence in local “true“ models.
• SCAFFOLD ([4], 2020): use of control variates to correct the

direction of local gradients.

2. Facing the challenge of privacy

• towards the server or a third party.
• Differential Privacy (DP) [2]: statistical approach to hide individual

contributions to the dataset by adding noise to gradients.
• DP level is ensured by a budget (ϵ,δ) ∈R∗+

2 (the lower, the better).
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Contributions

Related work

• versions of DP-FedAvg [6, 3, 8], mostly without theoretical analysis.
• no approach designed to tackle data heterogeneity with DP.

Our results: expressing utility and privacy guarantees for federated
learning with fine results of DP theory [7], considering

• heterogeneity issues between users,
• convex and non-convex objective functions.

Our algorithm: DP-SCAFFOLD(-warm)

• using gradient perturbation via Gaussian noise with scale σg ,
• taking advantage of control variates,
• fairly comparing our results to DP-FedAvg(σg ) performance.
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Theoretical results

We provide two main results in our article.

Privacy analysis

• with the same scale of noise σ∗
g , DP-SCAFFOLD and DP-FedAvg are

both (O(ϵ),δ)-DP w.r.t. the whole dataset towards any third party.

Utility analysis

• if σg =σ∗
g , DP-SCAFFOLD-warm converges faster than DP-FedAvg,

• the proof for DP-FedAvg relies on an extra assumption on gradients.

We highlight theoretical trade-offs in our convergence bounds involving

• terms of heterogeneity,
• terms of privacy (ϵ,δ),
• terms from the federated framework (number of users, number of

communication rounds, number of local SGD updates, sampling...).
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Numerical experiments



Experiments (heterogeneity increasing from left to right)

Figure 1: Test Accuracy on synthetic data (Logistic regression)

Figure 2: Test Accuracy on MNIST [1] data (Neural network, one hidden layer)
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