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1. Facing the challenge of heterogeneity between users

e non i.i.d data and/or divergence in local “true” models.
e SCAFFOLD ([4], 2020): use of control variates to correct the
direction of local gradients.

2. Facing the challenge of privacy

e towards the server or a third party.

o Differential Privacy (DP) [2]: statistical approach to hide individual
contributions to the dataset by adding noise to gradients.

e DP level is ensured by a budget (¢,6) e R*? (the lower, the better).
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Related work

e versions of DP-FedAvg [6, 3, 8], mostly without theoretical analysis.

e no approach designed to tackle data heterogeneity with DP.

Our results: expressing utility and privacy guarantees for federated
learning with fine results of DP theory [7], considering

e heterogeneity issues between users,

e convex and non-convex objective functions.
Our algorithm: DP-SCAFFOLD (-warm)

e using gradient perturbation via Gaussian noise with scale o,
e taking advantage of control variates,

e fairly comparing our results to DP-FedAvg(og) performance.
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Theoretical results

We provide two main results in our article.

Privacy analysis

e with the same scale of noise U;,, DP-SCAFFOLD and DP-FedAvg are
both (O(e),0)-DP w.r.t. the whole dataset towards any third party.

Utility analysis

o ifog= UZ,, DP-SCAFFOLD-warm converges faster than DP-FedAvg,

e the proof for DP-FedAvg relies on an extra assumption on gradients.
We highlight theoretical trade-offs in our convergence bounds involving

e terms of heterogeneity,
e terms of privacy (,0),

e terms from the federated framework (number of users, number of
communication rounds, number of local SGD updates, sampling...).
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Experiments (heterogeneity increasing from left to right)
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Figure 1: Test Accuracy on synthetic data (Logistic regression)
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