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Short Summary of Our Work

• We develop a new theoretical framework for the analysis of SEG

• Unified assumption on the stochastic estimator, stepsizes, and the problem
itself

• Same-Sample Stochastic Extragradient (S-SEG) and Independent-Samples
Stochastic Extragradient (I-SEG) fit the assumption

• General convergence result under this assumption
• Our convergence guarantees give tight rates for several well-known special

cases
• We obtain new results for known methods and also propose new variants of

SEG
• Weak assumptions in the special cases
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Problem

find x∗ ∈ Rd such that F (x∗) = 0 (VIP)

• Operator F (x) : Rd → Rd is L-Lipschitz, i.e., for all x , y ∈ Rd

‖F (x)− F (y)‖ ≤ L‖x − y‖ (1)

• Operator F (x) is µ-quasi strongly monotone, i.e., for µ ≥ 0 and for all x ∈ Rd

〈F (x), x − x∗〉 ≥ µ‖x − x∗‖2. (2)

We assume that x∗ is unique
• Operator F (x) can be

• expectation F (x) = E[Fξ(x)]

• finite-sum F (x) = 1
n

n∑
i=1

Fi (x)
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Extragradient Method

Extragradient method (EG) [Korpelevich, 1976]:

xk+1 = xk − γF
(
xk − γF (xk)

)
(EG)

Eduard Gorbunov Stochastic Extragradient March 28, 2022 5 / 14



Preliminaries Unified Analysis References

Stochastic Extragradient Method

• Independent-Samples Stochastic Extragradient method (I-SEG) [Nemirovski,
2004]

xk+1 = xk − γFξk2
(
xk − γFξk1(x

k)
)
, (I-SEG)

• ξk1 and ξk2 are sampled independently
• Same-Sample Stochastic Extragradient method (S-SEG) [Mishchenko et al.,

2020]
xk+1 = xk − γFξk

(
xk − γFξk (xk)

)
, (S-SEG)
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Analysis of Stochastic Extragradient Method

• State-of-the-art theoretical results on SEG [Mishchenko et al., 2020,
Beznosikov et al., 2020, Hsieh et al., 2020]

• are obtained via different proof techniques
• rely on different assumptions

• Some interesting directions are unexplored including
• non-uniform sampling
• different stepsizes for extrapolation and update without strong assumptions on

them

A single unifying framework allowing to tighten known results and to obtain new
ones is required
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Generalized Update Rule

xk+1 = xk − γξkgξk (xk), (3)

• gξk (x
k) – some stochastic operator evaluated at point xk

• ξk – the randomness/stochasticity appearing at iteration k (e.g., the sample
used at step k)

• γξk – the stepsize that is allowed to depend on ξk
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Key Assumption

Assumption 1
We assume that there exist non-negative constants A,B,C ,D1,D2 ≥ 0, ρ ∈ [0, 1],
and (possibly random) non-negative sequence {Gk}k≥0 such that

Eξk
[
γ2
ξk‖gξk (x

k)‖2
]
≤ 2APk + C‖xk − x∗‖2 + D1,

(4)

Pk ≥ ρ‖xk − x∗‖2 + BGk − D2, (5)

where Pk = Eξk
[
γξk 〈gξk (xk), xk − x∗〉

]
.
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General Convergence Result

Theorem 1
Let Assumption 1 hold with A ≤ 1/2 and ρ > C ≥ 0. Then, the iterates of SEG
given by (3) satisfy

E
[
‖xK − x∗‖2

]
≤ (1+ C − ρ)K‖x0 − x∗‖2 + D1 + D2

ρ− C
.

In one theorem, we either recover the best-known results for SEG or improve them
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Achieved Results

• Better rates for S-SEG:

• We improve the result by Mishchenko et al. [2020] for S-SEG with uniform
sampling

• We derive better rates for other sampling strategies including importance
sampling and mini-batching without replacement

• Better rates for I-SEG:
• We improve the result by Hsieh et al. [2020]
• We generalize the result by Beznosikov et al. [2020]
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In the Paper We Also Have

• Results for S-SEG in the case of Arbitrary Sampling
• Results for the case when µ = 0
• Numerical experiments corroborating our theorerical findings
• Link to the code:
https://github.com/hugobb/Stochastic-Extragradient
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