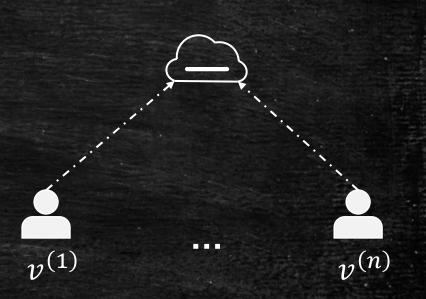
Asymptotically Optimal Locally Private Heavy Hitters via Parameterized Sketches

Hao Wu, Anthony Wirth

School of Computing and Information Systems
The University of Melbourne

Frequency Estimation

- A set $\mathcal U$ of n users and a server.
- Each user $u \in [n]$ holds an element $v^{(u)}$ from some data domain \mathcal{D} of size d.
- Each user reports their element.
- Two frequency estimation tasks for server:
- 1. Frequency Oracle \mathcal{A}_{oracle} :
 - (Informally) given $v \in \mathcal{D}$, return an estimate of v's frequency in \mathcal{U} .
- 2. Succinct Histogram A_{hist} :
 - (Informally) return a set of elements with high frequencies amongst $\mathcal U$, known as heavy hitters, together with their frequency estimates.

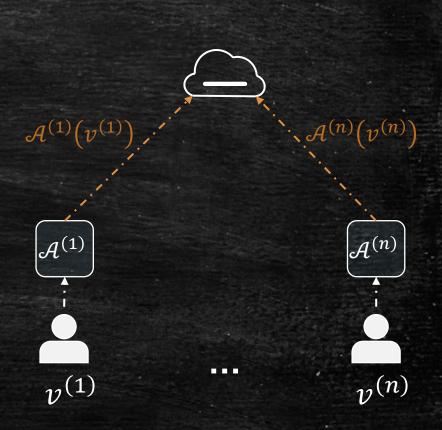


Local Differential Privacy

- To protect sensitive information, the users don't report their elements directly.
- Each user u perturbs $v^{(u)}$ with a local randomizer $\mathcal{A}^{(u)} \colon \mathcal{D} \to \mathcal{Y}$ before reporting.
- Server preforms the frequency estimation tasks based on the noisy reports.
- $\mathcal{A}^{(u)}$ is ε -local differentially private: for all $v, v' \in \mathcal{D}$ and all (measurable) $Y \subseteq \mathcal{Y}$,

$$\Pr[\mathcal{A}^{(u)}(v) \in Y] \le e^{\epsilon} \cdot \Pr[\mathcal{A}^{(u)}(v') \in Y]$$

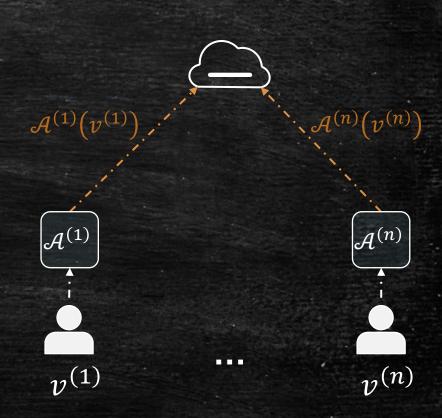
- The output distribution of $\mathcal{A}^{(u)}$ varies little with the input.



Challenge

• The server-side algorithm's running time/memory usage may scale linearly with data domain size d.

- Example of concern: popular URLs with length up to 20 characters (Fanti et al., 2016)
 - URL characters can include digits (o-9),
 letters(A-Z, a-z), and a few special characters ("-", ".", " " ").
 - Hence $d = 66^{20} \ge 10^{36}$



Existing Deployed Solutions

Sketching.

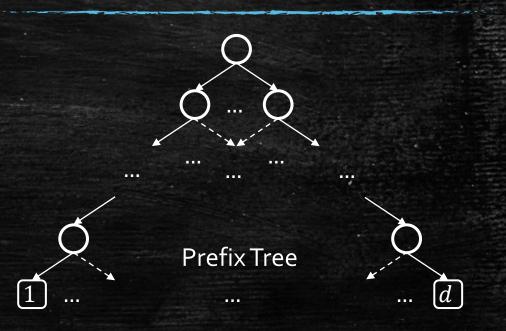
- Reduce the size of \mathcal{D} for \mathcal{A}_{oracle} .
- Pick a hash function h, which maps elements in \mathcal{D} to a smaller domain [m], for some $m \in \mathbb{N}^+$.
- Repetitions may be required to handle collisions.

$\begin{bmatrix} 1 \\ h \end{bmatrix} \qquad \dots \dots \qquad \begin{bmatrix} d \\ \end{bmatrix}$

 \mathcal{D}

Hierarchical Searching.

- Avoid inspecting each element in \mathcal{D} .
- Encode elements in \mathcal{D} as strings, over which a prefix tree is constructed.
- If an element in \mathcal{D} is heavy, so are its prefixes.
- Heavy hitters are identified top down.



Existing Work Comparison

For failure probability β ,

- Sketching A_{oracle} :
 - FreqOracle (Bassily et al., 17)
 - Estimation error:

$$O\left((1/\epsilon)\cdot\sqrt{n\cdot\ln(n/\beta)}\right)$$

- Server running time: $\tilde{O}(n)$
- Server memory: $\tilde{O}(\sqrt{n})$
- Hierarchical Searching A_{hist} :
 - TreeHist (Bassily et al., 17)
 - Estimation error:

$$O\left((1/\epsilon)\cdot\sqrt{n\cdot\ln(d)\cdot\ln(n/\beta)}\right)$$

- Server running time: $\tilde{O}(n)$
- Server memory: $\tilde{O}(\sqrt{n})$

- Easy to implement; Low time complexity and memory usage.
 - Their variants are studied experimentally (Cormode et al. 21).
 - Algorithms following this vein perform well in practice.
- Sup-optimal errors.

Existing Work Comparison

- Theoretical optimal error.
- Running time and memory usage depend on d.

- Theoretical optimal error.
- Due to the sophistication of errorcorrecting codes, it has not been implemented.

- Non-Sketching A_{oracle}:
 - HRR (Nguyên et al., 16; Cormode et al., 19)
 - Estimation error (matches lower bound):

$$O\left((1/\epsilon)\cdot\sqrt{n\cdot\ln(1/\beta)}\right)$$

- Server running time: O(n+d)
- Server memory: O(d)
- Error-Correcting Code A_{hist}:
 - PrivateExpanderSketch (Bun et al., 19)
 - Estimation error (matches lower bound):

$$O\left((1/\epsilon)\cdot\sqrt{n\cdot\ln(d/\beta)}\right)$$

- Server running time: $\tilde{O}(n)$
- Server memory: $\tilde{O}(\sqrt{n})$

Can We Close the Gaps?

- 1. Are theoretical error guarantees of existing approaches sketching \mathcal{A}_{oracle} and hierarchical searching \mathcal{A}_{hist} best possible?
- 2. Or can we obtain algorithms of this type that achieve optimal error guarantee?

New A_{oracle} HadaOracle & A_{hist} HadaHeavy

- Sketching A_{oracle}:
 - FreqOracle (Bassily et al., 17)
 - Estimation error:

$$O\left((1/\epsilon)\cdot\sqrt{n\cdot\ln(n/\beta)}\right)$$

- Server running time: $\tilde{O}(n)$
- Server memory: $\tilde{O}(\sqrt{n})$
- Hierarchical Searching A_{hist} :
 - TreeHist (Bassily et al., 17)
 - Estimation error:

$$O\left((1/\epsilon)\cdot\sqrt{n\cdot\ln(d)\cdot\ln(n/\beta)}\right)$$

- Server running time: $\tilde{O}(n)$
- Server memory: $\tilde{O}(\sqrt{n})$

- Non-Sketching A_{oracle} :
 - HRR (Nguyên et al., 16; Cormode et al., 19)
 - Estimation error (matches lower bound):

$$O\left((1/\epsilon)\cdot\sqrt{n\cdot\ln(1/\beta)}\right)$$

- Server running time: O(n+d)
- Server memory: O(d)
- *Error-Correcting Code* A_{hist} : if B = n-c
 - PrivateExpanderSketch (Bun et al., 19)
 - Estimation error (matches lower bound):

$$O\left((1/\epsilon)\cdot\sqrt{n\cdot\ln(d/\beta)}\right)$$

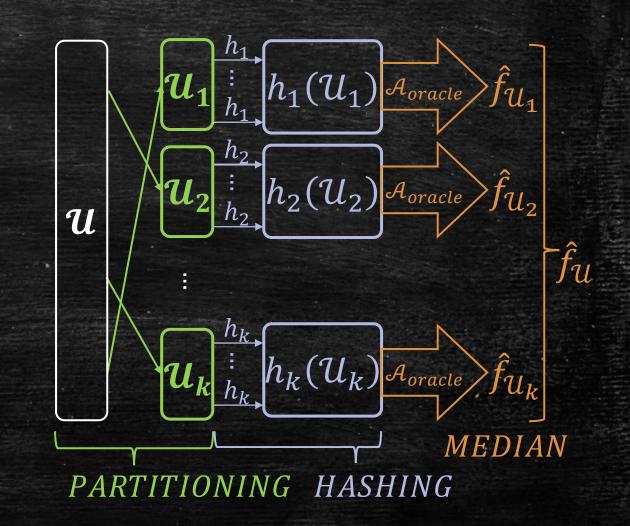
- Server running time: O(n)
- Server memory: $\tilde{O}(\sqrt{n})$

Summary of Results

	Performance Metric	Server Time	Server Mem	Worst-Case Error	Lower Bound
FO	<u> HadaOracle (<i>this work</i>)</u>	$\tilde{O}(n)$	$\widetilde{O}(\sqrt{n})$	$O\left((1/\epsilon)\cdot\sqrt{n\cdot\ln(1/\beta)}\right)$	$\Omega\left(\frac{1}{\epsilon}\sqrt{n\ln\frac{1}{\beta}}\right)$
	HRR (Nguyên et al., 16; Cormode et al., 19)	$ ilde{ ilde{O}(d)}$	$ ilde{O}(d)$	$O\left((1/\epsilon)\cdot\sqrt{n\cdot\ln(1/\beta)}\right)$	
	FreqOracle (Bassily et al., 17)	$\tilde{O}(n)$	$ ilde{O}(\sqrt{n})$	$O\left((1/\epsilon)\cdot\sqrt{n\cdot\ln(n/\beta)}\right)$	
	Hashtogram (Bassily et al., 17)	$\tilde{O}(n)$	$\tilde{O}(\sqrt{n})$	$O\left((1/\epsilon)\cdot\sqrt{n\cdot\ln(n/\beta)}\right)$	
S-Hist	<u> HadaHeavy (<i>this work</i>)</u>	$ ilde{O}(n)$	$ ilde{O}(\sqrt{n})$	$O\left((1/\epsilon)\cdot\sqrt{n\cdot\ln(d)\cdot\left(1+rac{\ln(1/\beta)}{\ln n} ight)}\right)$	$\Omega\left(rac{1}{\epsilon}\sqrt{n\lnrac{d}{eta}} ight)$
	TreeHist (Bassily et al., 17)	$\tilde{O}(n)$	$ ilde{O}(\sqrt{n})$	$O\left((1/\epsilon)\cdot\sqrt{n\cdot(\ln d)\cdot\ln(n/\beta)}\right)$	
	PrivateExpanderSketch (Bun et al., 19)	$\tilde{O}(n)$	$ ilde{O}(\sqrt{n})$	$O\left((1/\epsilon)\cdot\sqrt{n\cdot\ln(d/\beta)}\right)$	

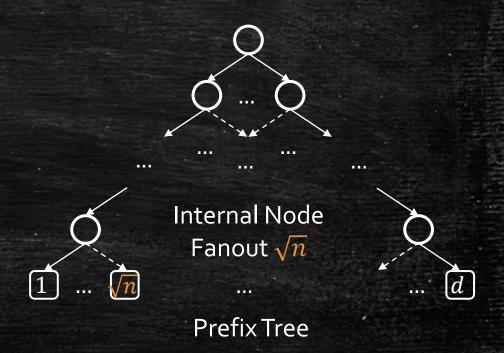
HadaOracle

- Randomly partition users \mathcal{U} into subsets $\mathcal{U}_1, \dots, \mathcal{U}_k$, where $k \in \Theta(\ln(1/\beta))$, analysis of which is based on martingale concentration inequalities.
- For each $i \in [k]$:
 - pick a pairwise independent hash function $h_i \colon \mathcal{D} \to [m]$, where $m \in \Theta(\sqrt{n})$.
 - for each $u \in \mathcal{U}_i$, replace their element $v^{(u)}$ by $h_i(v^{(u)})$.
 - denote the hashed elements of users in \mathcal{U}_i by $h_i(\mathcal{U}_i)$.
- Construct $\mathcal{A}_{oracle}(HRR)$ over all $h_i(\mathcal{U}_i)$:
 - for a query $v \in D$, return the scaled median of its frequency estimates.



HadaHeavy

- Encode elements in \mathcal{D} as strings with alphabet size \sqrt{n} .
- Construct the prefix tree.
 - It has depth $L \doteq 2 \cdot \frac{\ln d}{\ln n}$.
 - Randomly split the users $\mathcal U$ into L groups, U_1, U_2, \ldots, U_L .
 - Build a HadaOracle for nodes with depth i, based on users U_i , for each $i \in [L]$.
- Heavy hitters are identified top down.
 - If a node is heavy, inspect its children to find possible heavy nodes.



THANK YOU

REFERENCES

- G. C. Fanti, et.al, "Building a RAPPOR with the unknown: Privacy-preserving learning of associations and data dictionaries," Priv. Enhancing Technol., 2016.
- G. Cormode, et.al, "Answering range queries under local differential privacy," VLDB Endow., 2019.
- G. Cormode, et.al, "Frequency estimation under local differential privacy [experiments, analysis and benchmarks]," CoRR, 2021.
- M. Bun, et.al, "Heavy hitters and the structure of local privacy," ACM Trans. Algorithms, 2019.
- R. Bassily, et.al, "Practical locally private heavy hitters," NeurIPS., 2017,
- T.T. Nguyên, et.al, "Collecting and analyzing data from smart device users with local differential privacy," CoRR., 2016.