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Some ways to do Meta (Reinforcement) Learning:

Learn an initialisation that is quickly adapted (Finn et al., 2017)

Learn a recurrent model (Wang et al., 2017)

Learn a bias (Cella et al., 2020)
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Setup

Definition (MDP with linear transition core)

MDP M (S ,A,P, r ,N,H)

A priori given feature maps φ(st , at) ∈ Rd and ψ(st+1) ∈ Rd ′

There exists an unknown matrix M∗ ∈ Rd×d ′
(the transition core),

such that ∀(st , at) ∈ S × A, st+1 ∈ S :

P(s̃|s, a) = φ(s, a)TM∗ψ(s̃).

Regret as Performance Metric

RT (M) =
N∑

n=1

[
V ∗(s0)−

(
H∑

h=1

r(sn,h, an,h)

)]
.
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Finding the transition core

Notation

Kψ =
∑

s̃∈S ψ(s̃)ψ(s̃)T , Vn =
∑

n′≤n,h≤H φn′,hφ
T
n′,h and V λ

n = λI + Vn.

Ridge regression problem in n-th episode for a fixed bias matrix W ∈ Rd×d ′

Mn = arg min
M

n,H∑
n′,h

‖ψT
n′,hK

−1
ψ − φ

T
n′,hM‖2

2 + λ‖M −W ‖2
F .

Solution of the biased ridge regression:

Mn = W +
(
V λ

n

)−1
n,H∑
n′,h

φn,h

(
ψT
n′,hK

−1
ψ − φ

T
n′,hW

)
.
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Feature Regularity Assumptions

1 ‖φ(s, a)‖2
2 ≤ Cφ ∀(s, a) ∈ S × A,

2 ‖ΨK−1
ψ ‖2,∞ ≤ C ′ψ

3 ‖ΨT v‖2 ≤ Cψ‖v‖∞ ∀v ∈ RS

4 ‖M∗‖2
F ≤ CMd
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Regret Single Task BUC-MatrixRL

Optimistic radius:

βW
n (δ) := C ′ψ

√
2d ′ log

(
1

δ

)
+ d ′d log (D)+

√
λ‖W −M∗‖F (1)

Theorem (Regret BUC-Matrix RL (Yang and Wang, 2019))

Under regularity assumptions, choosing the ellipsoid radius βW
n (δ) as in 1

BUC-MatrixRL abides with probability at least 1− 1/(NH) after NH steps
the following bound on the regret:

RT (M∗) ≤
(
C ′ψ
√
d ′d log (TD) +

√
λ‖W −M∗‖F

)
2CψH

√
Cφ,λTd ln (D)
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Interpreting the Single Task BUC-MatrixRL regret

1 Uninformed transition core W = 0 ∈ Rd×d ′
recovers Yang and Wang

(2019)

2 Oracle provided transition core W = M∗. Recalling the definition of D

as 1 +
nHCφ
λd , it is clear that the regret goes to 0 as λ→∞
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Considered Meta RL Setting

Interaction Protocol

1 Interact with train tasks Ttrain
2 Be evaluated on test task distribution Ttest

Meta Transfer Regret as Performance Metric

MtrT (Ttest) = EM∼TtestRegret(T ,M) .

Useful quantities

VarW (T ) = EM∼T
[
‖M −W ‖2

F

]
MadW (T ) = EM∼T [‖M −W ‖F ] .
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Optimal Meta Transfer Regret

Theorem (Meta Transfer Regret BUC-MatrixRL)

Under regularity assumptions we have with probability at least 1− 1/(NH)
for a task distribution T the following Mtr after T steps per task (where
we absorb constant factors into C ):

MtrT (T ) ≤CCψHC ′ψd
√

d ′TCφ,λ log (TD) ln (D)

+ CCψH
√

VarWλTCφ,λd ln (D)
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Interpreting MTR

1 limλ→∞MtrT (T ) ≤ CCψH
√

VarWT 2Cφ
2 Choosing the regularisation strength 1

TVarW

yields a
√

log(1 + VarW ) dependence

3 Let λ = 1
TVarW

and W = M̄ . Then:
limVarW (T )→0 MtrT (T ) = 0

4 Oracle BUC-MatrixRL improves against
individual task learning, whenever the variance
of the task distribution is much lower than its
offset from the origin:

VarM̄ = EW∼T ‖M − M̄‖2
F � EM∼T ‖M‖2

F = Var0 .
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What to do without an oracle?
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Estimating the bias

Theorem (MTR with bias estimator)

BUC-MatrixRL incurs after T interactions in G previous tasks, using a bias
estimator ŴG ,n,h , step size λ = 1

TVarŴG ,n,h

under regularity assumptions,

with probability at least 1− 1/(NH) at most the following meta transfer
regret:

MtrT (MG+1) ≤ CCψHdC
′
ψ√

Cφ,λd ′T log

(
T +

T 3Cφ (VarM̄ + εG ,T (T ))

d

)
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A low bias estimator

Combining previous estimators with normalisation factor Z :

ŴG ,n,h =
G−1∑
g=1

T

Z
M̂g ,T +

nH + h

Z
M̂G ,n,h,

Resulting estimation error:

√
εG ,T (T ) ≤ HT (G + 1, M̄) + max

g∈[G ]

β0
g ,T (1/NH)

λ
1/2
min(V λ

g ,T )
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A high bias estimator

Performing global ridge regression with global features ṼG ,n,h:

ŴG ,n,h =(Ṽ λ
G ,n,h)−1

[
G−1∑
g=1

N,H∑
n,h

φg ,n,hψg ,n,hK−1
ψ +

n,h∑
n′,h′

φG ,n′,h′ψG ,n′,h′K−1
ψ

]
Resulting estimation error:√

εG ,T (T ) ≤ HT (G + 1, M̄) + 2(G + 1) max
g∈[G+1]

H̃(G + 1,Mg )

+
dCM

λ+ νmin
+ C ′ψ

√
2

λ+ νmin
log

(
NH +

GN2H2Cφ
λd

)
︸ ︷︷ ︸

β0(1/(GNH))
λ+νmin

Minimal singular value: νmin = λmin

(
ṼG ,n,h

)
H̃(G + 1,Mg ) is a weighted version of the estimation error Mg :

H̃(G ,Mg ) = H(g ,Mg )σmax

(
Vg ,T Ṽ−1

G ,N,H

)
,

σmax

(
Vg ,T Ṽ−1

G ,N,H

)
quantifies misalignment of tasks
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Conclusion

Meta Learning via learning a bias improves against single task learning
for certain task families

Tradeoff between more training tasks and alignment of them

Assumes known features: future work to explore the impact of feature
learning (Raghu et al., 2019)
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