

Particle-based Adversarial Local Distribution Regularization

Thanh Nguyen-Duc, Trung Le, He Zhao, Jianfei Cai, Dinh Phung

Department of DSAI, Monash University

The minmax optimization

- This optimization improves model robustness and generalization.
- PGD^[1] and TRADES^[2] for robust ML, VAT^[3] for semi-supervised learning, and VADA^[4] for domain adaptation.

The minmax optimization

$$\min_{\theta} \mathbb{E}_{(\boldsymbol{x},y) \sim P_{\mathbb{D}}} \left[\max_{\boldsymbol{x}' \in B_{\epsilon}(\boldsymbol{x})} \ell(\boldsymbol{x}',\boldsymbol{x},y;\theta) \right]$$

$$(\boldsymbol{x},y) \sim P_{\mathbb{D}}$$

 f_{θ} model parameterized by θ

 $oldsymbol{x}'$ adversarial example

$$B_{\epsilon}(\boldsymbol{x}) = \{ \boldsymbol{x}' \in \boldsymbol{X} : ||\boldsymbol{x}' - \boldsymbol{x}||_p \le \epsilon \}$$

- The loss function can be various:
 - PGD uses cross-entropy loss

$$\ell(\boldsymbol{x}', \boldsymbol{x}, y; \theta) = CE(f_{\theta}(\boldsymbol{x}'), y)$$

TRADES, VAT and VADA use KL-divergence

$$\ell(\boldsymbol{x}', \boldsymbol{x}, y; \theta) = D_{\mathrm{KL}}(f_{\theta}(\boldsymbol{x}'), f_{\theta}(\boldsymbol{x}))$$

- [1] Towards deep learning models resistant to adversarial attacks. ICLR, 2018
- [2] Theoretically principled trade-off be- tween robustness and accuracy. ICML, 2019
- [3] Virtual adversarial training: a regularization method for supervised and semi-supervised learning, TPAMI, 2018
- [4] A dirt-t approach to unsupervised domain adaptation. ICLR, 2018

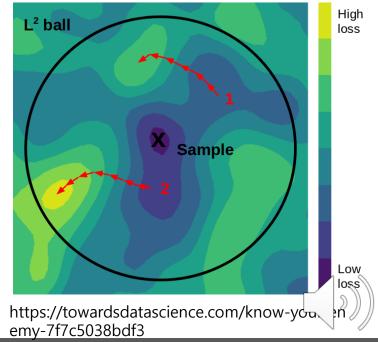
THANH NGUYEN

Adversarial local distribution

- Adversarial local distribution:
 - Consists of all adversarial examples inside the ball constraint.
 - Replaces the maximization optimization by a conditional distribution.

$$P_{ heta}(oldsymbol{x}'|oldsymbol{x},y) := rac{e^{\ell(oldsymbol{x}',oldsymbol{x},y; heta)}}{\int_{B_{\epsilon}(oldsymbol{x})}e^{\ell(oldsymbol{x}'',oldsymbol{x},y; heta)}doldsymbol{x}''} = rac{e^{\ell(oldsymbol{x}',oldsymbol{x},y; heta)}}{Z(oldsymbol{x},y; heta)}$$

- $P_{ heta}(\cdot|m{x},y)$ is the conditional local distribution over $B_{\epsilon}(m{x})$
- $Z(\boldsymbol{x},y;\theta)$ is a normalization function



THANH NGUYEN

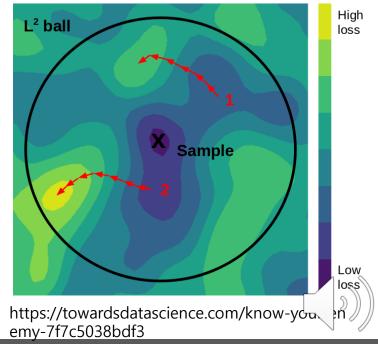
- The regularization:
 - improves robustness and generalization.
 - can be applied to robust ML, semi-supervised learning and domain adaptation
 - is a general regularization of PGD, TRADES, VAT and VADA.

$$egin{aligned} R(heta, oldsymbol{x}, y) &:= & \mathbb{E}_{oldsymbol{x}' \sim P_{ heta}(\cdot | oldsymbol{x}, y)} [\log P_{ heta}(oldsymbol{x}' | oldsymbol{x}, y)] \ &= & -H(P_{ heta}(\cdot | oldsymbol{x}, y)), \ B_{\epsilon}(oldsymbol{x}) &= & \{oldsymbol{x}' \in oldsymbol{X} : ||oldsymbol{x}' - oldsymbol{x}||_p \leq \epsilon\} \end{aligned}$$

- Minimize $R(\theta, \boldsymbol{x}, y)$ or equivalent to maximize $H(P_{\theta}(\cdot | \boldsymbol{x}, y))$
 - $P_{ heta}(\cdot|oldsymbol{x},y)$ to be more uniform distribution

•
$$\ell(\boldsymbol{x}', \boldsymbol{x}, y; \theta) = \ell(\boldsymbol{x}'', \boldsymbol{x}, y; \theta) = c(x, y; \theta)$$

 Minimizing the regularization loss leads to an enhancement in the model output smoothness



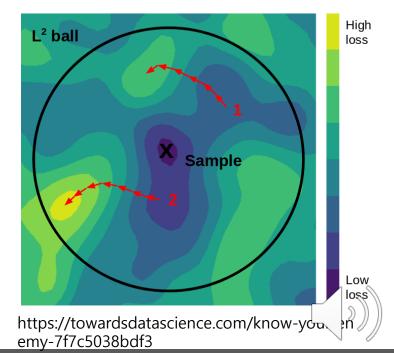
• $Z(\boldsymbol{x},y;\theta)$ is intractable to find

$$P_{ heta}(oldsymbol{x}'|oldsymbol{x},y) := rac{e^{\ell(oldsymbol{x}',oldsymbol{x},y; heta)}}{\int_{B_{\epsilon}(oldsymbol{x})}e^{\ell(oldsymbol{x}'',oldsymbol{x},y; heta)}doldsymbol{x}''} = rac{e^{\ell(oldsymbol{x}',oldsymbol{x},y; heta)}}{Z(oldsymbol{x},y; heta)}$$

Solve by a particle-based method to sample

$$oldsymbol{x}_1', oldsymbol{x}_2', \dots, oldsymbol{x}_n' \sim P_{ heta}(\cdot | oldsymbol{x}, y))$$

n: is the number of samples (or adversarial particles)



THANH NGUYEN

Approximate the adversarial local distribution

 Stein Variational Gradient Decent (SVGD) is a particle-based inference method using a functional gradient decent to approximate a ground-truth distribution.

Input: A natural sample $(\boldsymbol{x}, y) \sim P_{\mathbb{D}}$; n number of adversarial particles; ϵ for the constraint B_{ϵ} ; r normalization function; η initial noise factor; τ step size updating; N number of iterations; k kernel function

Output: Set of adversarial particles $\{x_1', x_2', \dots, x_n'\} \sim P_{\theta}(\cdot | x, y)$

Initialise a set of n particles and project to the B_{ϵ} constraint

$$\{ \boldsymbol{x}_i' \in \mathbb{R}^d, i \in \{1, 2, \dots, n\} | \boldsymbol{x}_i' = \prod_{B_{\epsilon}} (\boldsymbol{x} + \eta * Uniform_noise) \};$$

for
$$l = 1$$
 to N do

$$\begin{vmatrix} \text{for } each \ particle \ \boldsymbol{x}_i'^{(l)} \ \text{do} \\ \boldsymbol{x}_i'^{(l+1)} = \prod_{B_\epsilon} \left(\boldsymbol{x}_i'^{(l)} + \tau * r(\phi(\boldsymbol{x}_i'^{(l)})) \right); \\ \text{where } \phi(\boldsymbol{x}') = \frac{1}{n} \sum_{j=1}^n [k(\boldsymbol{x}_j'^{(l)}, \boldsymbol{x}') \nabla_{\boldsymbol{x}_j'^{(l)}} \log P(\boldsymbol{x}_j'^{(l)} | \boldsymbol{x}, y) + \nabla_{\boldsymbol{x}_j^{(l)}} k(\boldsymbol{x}_j'^{(l)}, \boldsymbol{x}')]; \\ \text{end} \end{aligned}$$

end

return
$$\{\boldsymbol{x}_1^{\prime N}, \boldsymbol{x}_2^{\prime N}, \dots, \boldsymbol{x}_n^{\prime N}\}$$
;

Algorithm 2: Approximating the conditional adversarial local distribution given \boldsymbol{x} by using Stein Variational Gradient Decent

Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose bayesian inference algorithm. In Proceedings of NeurIPS, volume 29, 2016

- Robust machine learning
 - CIFAR10 dataset
 - ResNet18

Method	Natural accuracy	Robust accuracy		
		PGD-200	Auto-Attack	B&W
ADT-EXP	0.83	0.458	0.458	0.465
ADT-EXPAM	0.84	0.461	0.445	0.458
PGD	0.852	0.455	0.419	$\boxed{0.426}$
Our_PGD	0.857	0.471	0.436	0.44
TRADES	0.834	0.525	0.483	0.487
Our_TRADES	0.778	0.539	0.501	0.506

Natural and robust accuracy comparison using CIFAR10 with ResNet18.

Semi-supervised learning

CIFAR10 dataset

• Trainset: 4,000 labeled samples, 56,000 unlabeled samples

• Testset: 10,000 samples

$n ext{ particle(s)}$	1	2	4	8
VAT	0.8601	0.8611	0.858	0.856
Our	0.867	0.876	0.883	0.872
VAT + Mixup	0.870	0.887	0.9013	0.893
Our + Mixup	0.913	0.925	0.930	0.927

Performance comparison between our method and VAT using mixup technique for all adversarial particles

Thank You

