

Fast Rank-1 NMF for Missing Data with KL Divergence

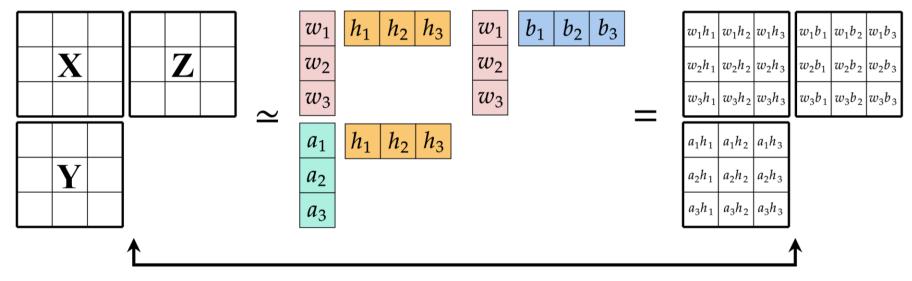
Kazu Ghalamkari^{1,2},

Mahito Sugiyama^{1,2}

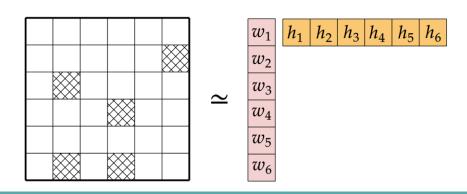
1: The Graduate University for Advanced Studies, SOKENDAL

2: National Institute of Informatics

The 25th International Conference on Artificial Intelligence and Statistics (AISTATS 2022)


Contributions

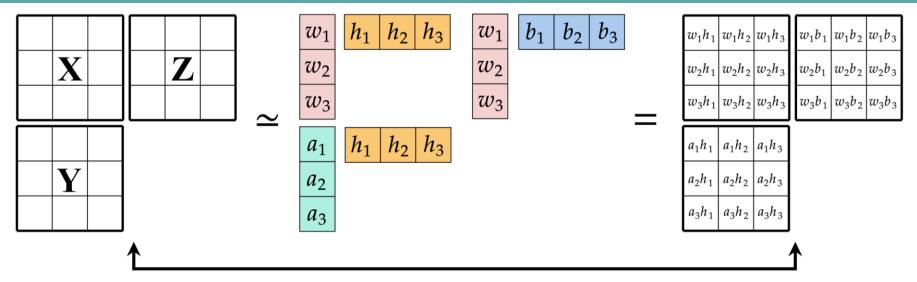
 \square Closed formula of the best rank-1 NMMF w.r.t. minimizing KL divergence


Contributions

Closed formula of the best rank-1 NMMF w.r.t. minimizing KL divergence

$$D(\mathbf{X}, \boldsymbol{w} \otimes \boldsymbol{h}) + \alpha D(\mathbf{Y}, \boldsymbol{a} \otimes \boldsymbol{h}) + \beta D(\mathbf{Z}, \boldsymbol{w} \otimes \boldsymbol{b})$$

 \square A1GM: Faster method for rank-1 NMF with missing values



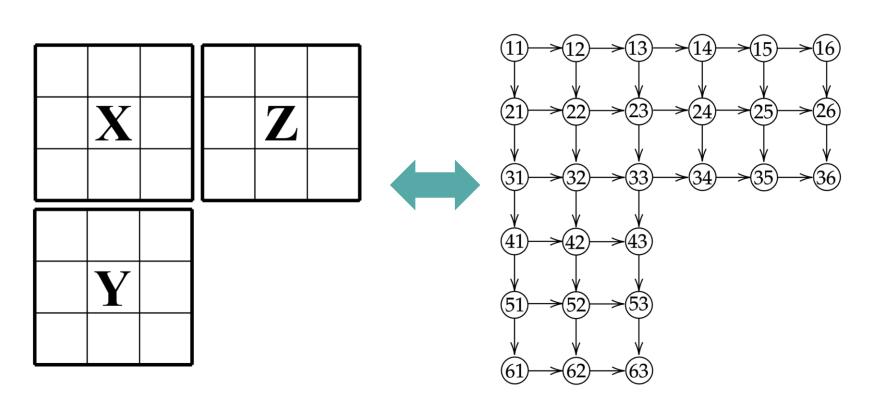
Non-gradient-based method.

No worries about initial values, stopping criterion and learning rate (2)

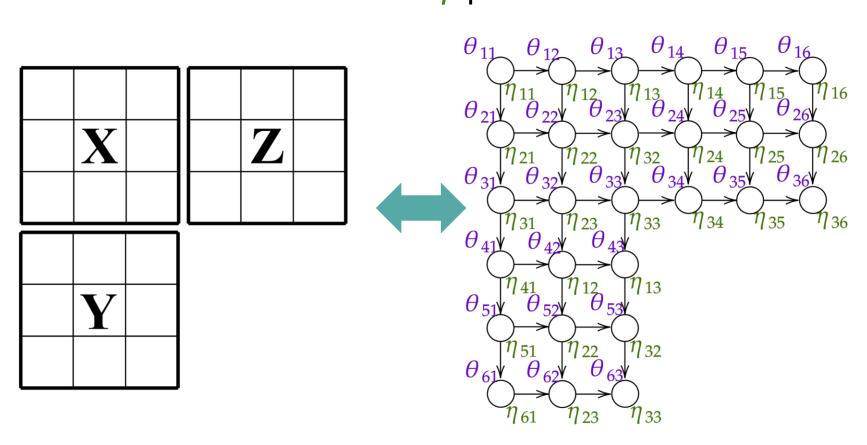
Closed formula of the best rank-1 NMMF

$$D(X, w \otimes h) + \alpha D(Y, a \otimes h) + \beta D(Z, w \otimes b)$$

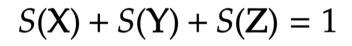
Theorem 1.

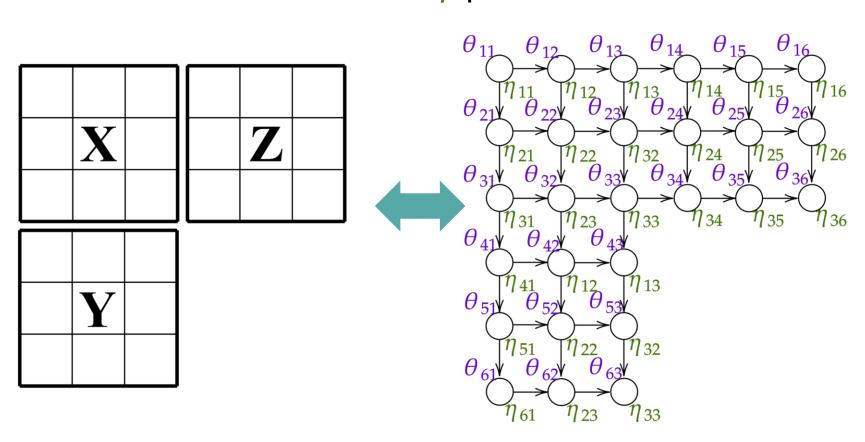

For given $\mathbf{X} \in \mathbb{R}_{>0}^{I \times J}$, $\mathbf{Y} \in \mathbb{R}_{>0}^{N \times J}$, and $\mathbf{Z} \in \mathbb{R}_{>0}^{I \times M}$ the best rank-1 NMMF is given as

$$w_i = \frac{\sqrt{S(\mathbf{X})}}{S(\mathbf{X}) + \beta S(\mathbf{Z})} \left\{ \sum_{j=1}^J \mathbf{X}_{ij} + \beta \sum_{m=1}^M \mathbf{Z}_{im} \right\} \qquad a_n = \frac{\sum_{j=1}^J \mathbf{Y}_{nj}}{\sqrt{S(\mathbf{X})}}$$

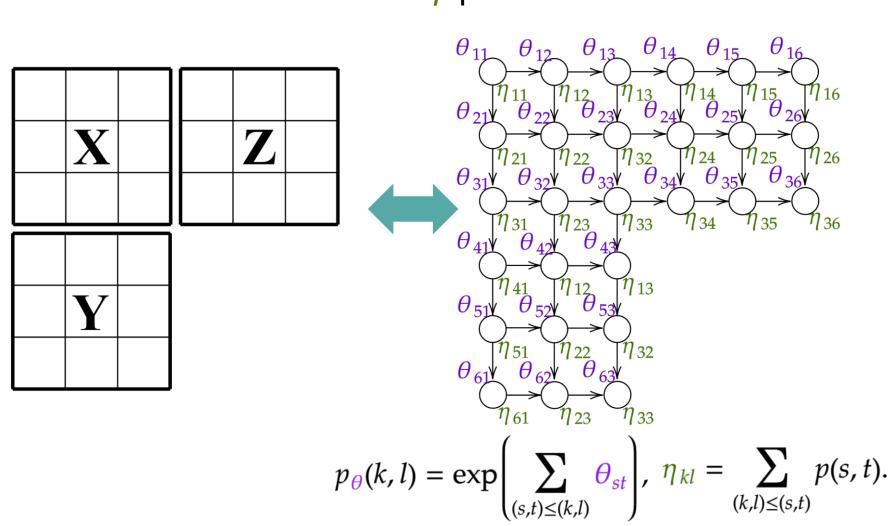

$$h_j = \frac{\sqrt{S(\mathbf{X})}}{S(\mathbf{X}) + \alpha S(\mathbf{Y})} \left\{ \sum_{i=1}^{I} \mathbf{X}_{ij} + \alpha \sum_{n=1}^{N} \mathbf{Y}_{nj} \right\} \qquad b_m = \frac{\sum_{i=1}^{I} \mathbf{Z}_{im}}{\sqrt{S(\mathbf{X})}}$$

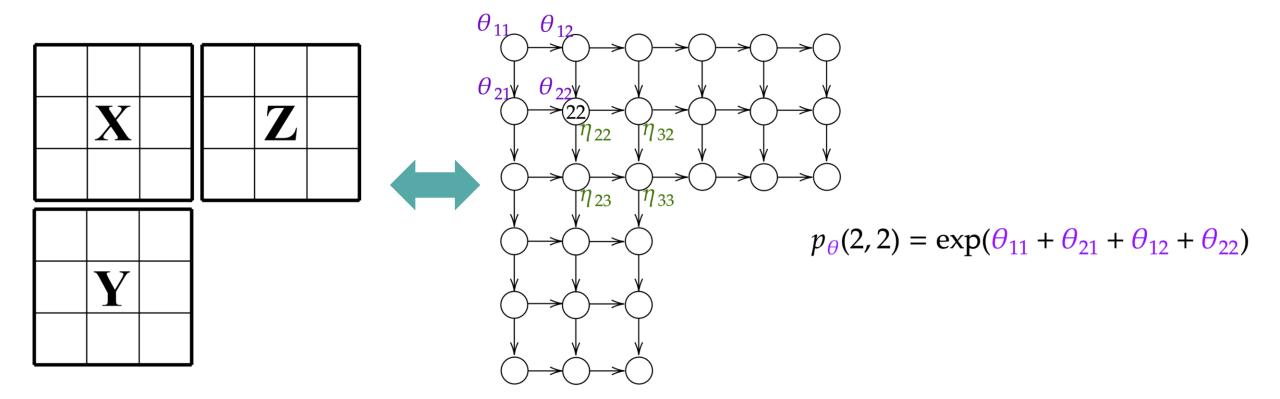
S(X) is sum of all elements of X.


☐ Introduce partial order structure in the input of NMMF



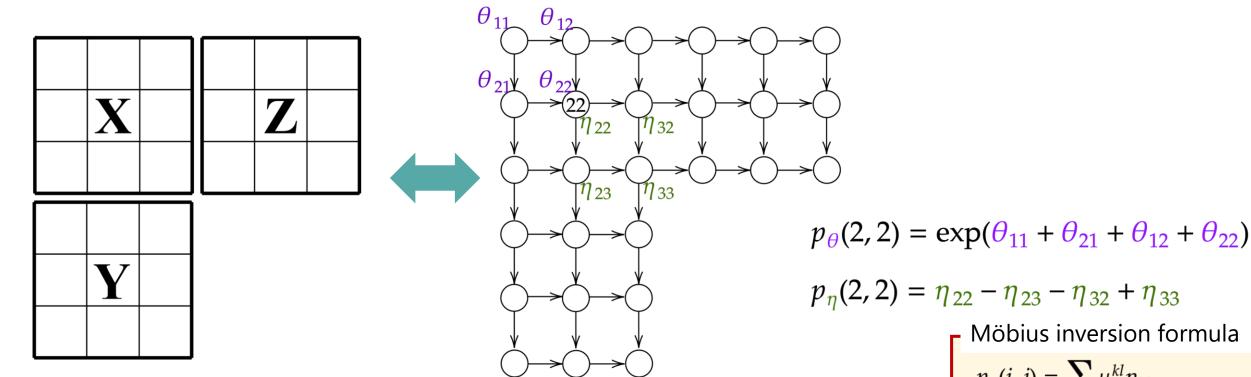
 \square Each node has θ - and η -parameters


 \square Each node has θ - and η -parameters


 \square Each node has θ - and η -parameters

$$S(\mathbf{X}) + S(\mathbf{Y}) + S(\mathbf{Z}) = 1$$

$$\square$$
 Example for $p(2,2)$.


$$S(\mathbf{X}) + S(\mathbf{Y}) + S(\mathbf{Z}) = 1$$

$$p_{\theta}(k,l) = \exp\left(\sum_{(s,t)\leq (k,l)} \theta_{st}\right), \ \eta_{kl} = \sum_{(k,l)\leq (s,t)} p(s,t).$$

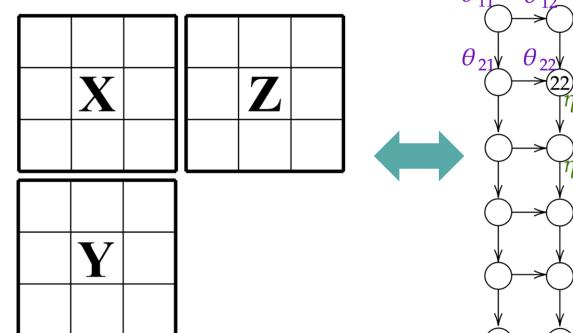
$$\square$$
 Example for $p(2,2)$.

$$S(\mathbf{X}) + S(\mathbf{Y}) + S(\mathbf{Z}) = 1$$

$$p_{\theta}(k,l) = \exp\left(\sum_{(s,t)\leq (k,l)} \theta_{st}\right), \ \eta_{kl} = \sum_{(k,l)\leq (s,t)} p(s,t).$$

$$M\"{o}bius inversion formula$$

$$p_{\eta}(i,j) = \sum_{(k,l)} \mu_{ij}^{kl} \eta_{kl}$$


$$\mu_{ij}^{kl} = \begin{cases} -\sum_{(i,j)\leq (s,t)<(k,l)} \mu_{ij}^{st} \ (i,j)<(k,l) \\ 0 \ otherwiese \end{cases}$$

$$p_{\eta}(i, j) = \sum_{\substack{(k, l) \\ \mu_{ij}^{kl}}} \mu_{ij}^{kl} \eta_{kl}$$

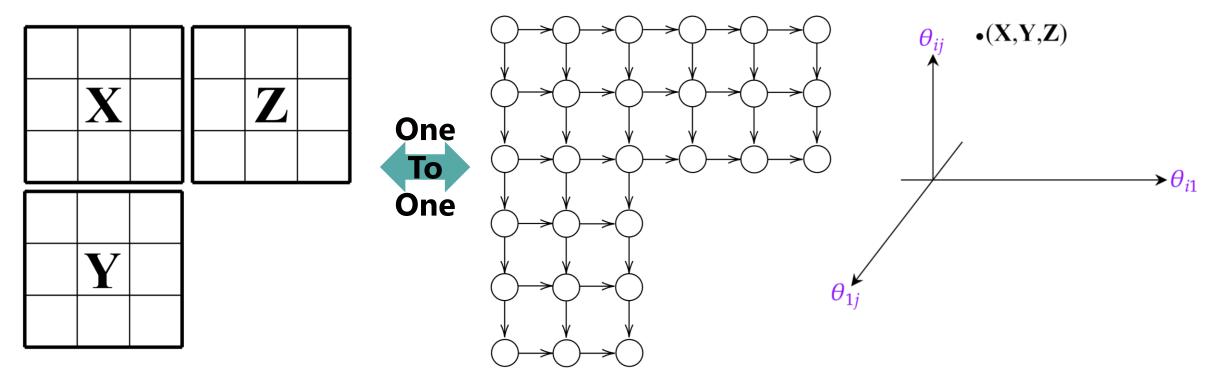
$$\mu_{ij}^{kl} = \begin{cases} -\sum_{\substack{(i, j) \le (s, t) < (k, l) \\ 1 & (i, j) = (k, l) \\ 0 & \text{otherwiese}} \end{cases}$$

$$\square$$
 Example for $p(2,2)$.

$$S(\mathbf{X}) + S(\mathbf{Y}) + S(\mathbf{Z}) = 1$$

$$X_{22} = p_{\theta}(2, 2) = \exp(\theta_{11} + \theta_{21} + \theta_{12} + \theta_{22})$$

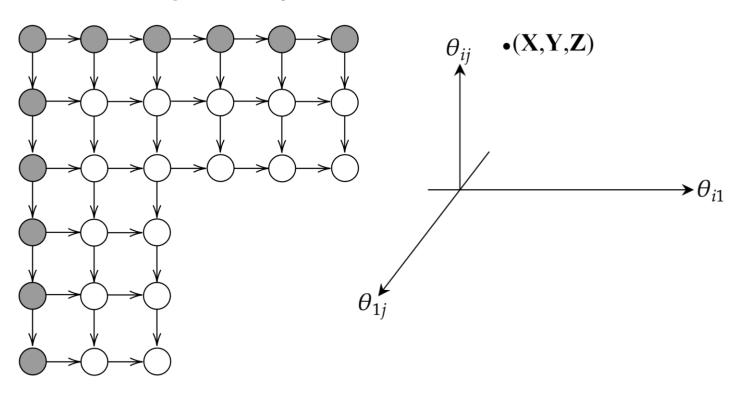
$$X_{22} = p_{\eta}(2,2) = \eta_{22} - \eta_{23} - \eta_{32} + \eta_{33}$$


 $p_{\theta}(k,l) = \exp\left(\sum_{(s,t) \leq (k,l)} \theta_{st}\right), \ \eta_{kl} = \sum_{(k,l) \leq (s,t)} p(s,t).$ $M\"{o}bius inversion formula$ $p_{\eta}(i,j) = \sum_{(k,l)} \mu_{ij}^{kl} \eta_{kl}$ $\mu_{ij}^{kl} = \begin{cases} -\sum_{(i,j) \leq (s,t) < (k,l)} \mu_{ij}^{st} \ (i,j) < (k,l) \\ 1 \ 0 \ \text{otherwise} \end{cases}$

$$p_{\eta}(i,j) = \sum_{(k,l)} \mu_{ij}^{kl} \eta_{kl}$$

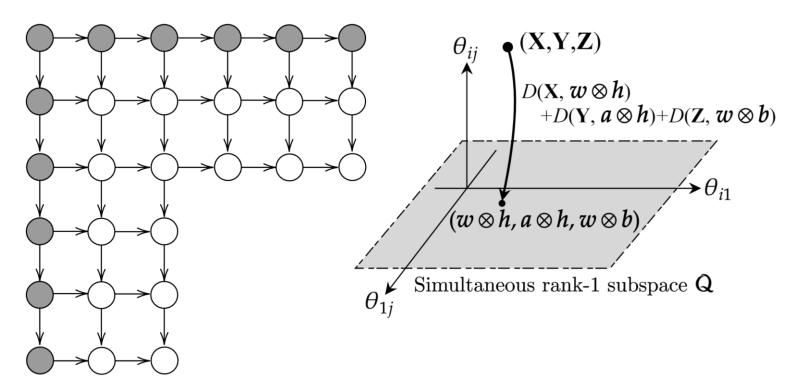
$$\mu_{ij}^{kl} = \begin{cases} -\sum_{(i,j) \le (s,t) < (k,l)} \mu_{ij}^{st} & (i,j) < (k,l) \\ 1 & (i,j) = (k,l) \end{cases}$$

$$\square$$
 Introducing θ - and η -coordinate


$$S(\mathbf{X}) + S(\mathbf{Y}) + S(\mathbf{Z}) = 1$$

$$p_{\theta}(k,l) = \exp\left(\sum_{(s,t)\leq (k,l)} \theta_{st}\right), \ \eta_{kl} = \sum_{(k,l)\leq (s,t)} p(s,t).$$

(X,Y,Z) is simultaneously rank-1 decomposable. \Leftrightarrow It can be written as $(w \otimes h, a \otimes h, w \otimes b)$.

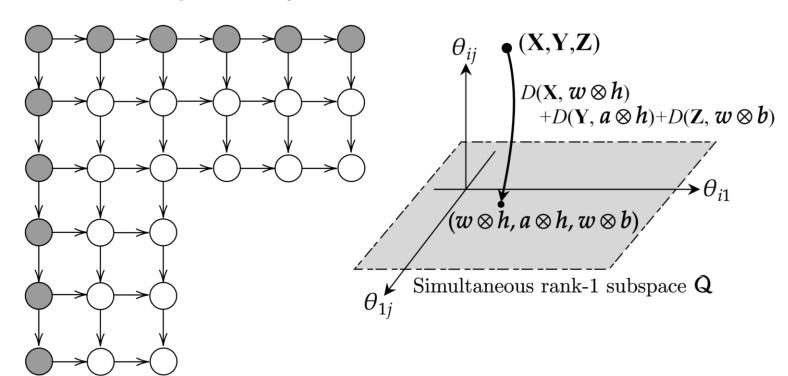

One-body parameter ○ Two-body parameter

(X,Y,Z) is simultaneously rank-1 decomposable. \Leftrightarrow It can be written as $(w \otimes h, a \otimes h, w \otimes b)$.

Simultaneous Rank-1 θ -condition

Its all two-body θ -parameters are 0.

(X,Y,Z) is simultaneously rank-1 decomposable. \Leftrightarrow It can be written as $(w \otimes h, a \otimes h, w \otimes b)$.


One-body parameter **○ Two-body** parameter

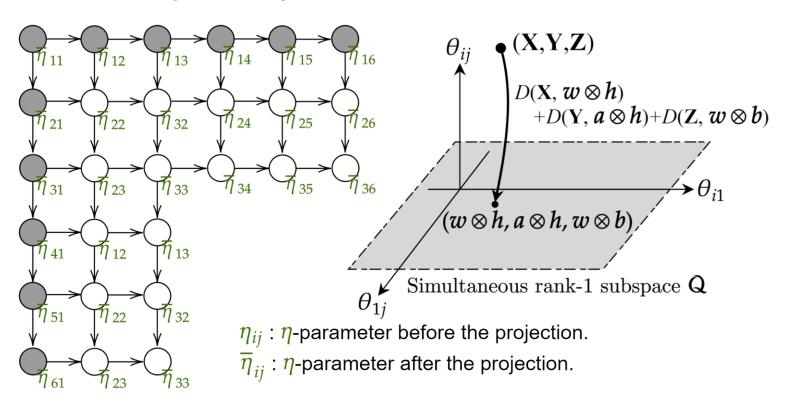
Simultaneous Rank-1 θ -condition

Its all two-body θ -parameters are 0.

Simultaneous Rank-1 η -condition

$$\eta_{ij} = \eta_{i1}\eta_{1j}$$

(X,Y,Z) is simultaneously rank-1 decomposable. \Leftrightarrow It can be written as $(w \otimes h, a \otimes h, w \otimes b)$.

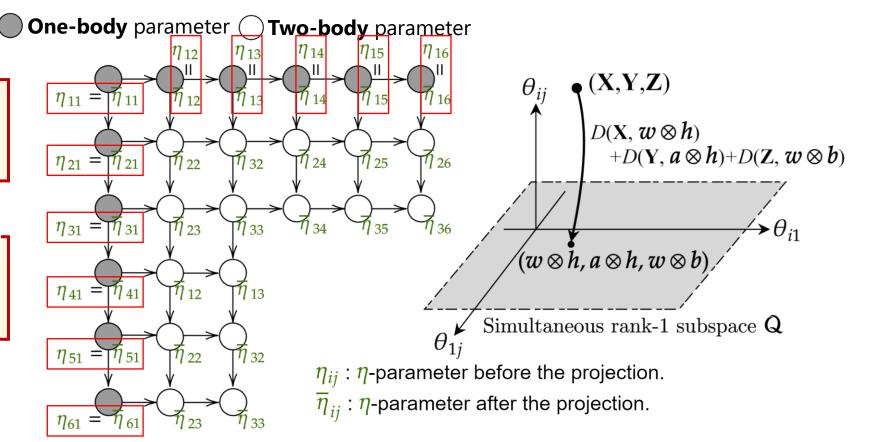

One-body parameter ○ Two-body parameter

Simultaneous Rank-1 θ -condition

Its all two-body θ -parameters are 0.

Simultaneous Rank-1 η -condition -

$$\eta_{ij} = \eta_{i1}\eta_{1j}$$


(X,Y,Z) is simultaneously rank-1 decomposable. \Leftrightarrow It can be written as $(w \otimes h, a \otimes h, w \otimes b)$.

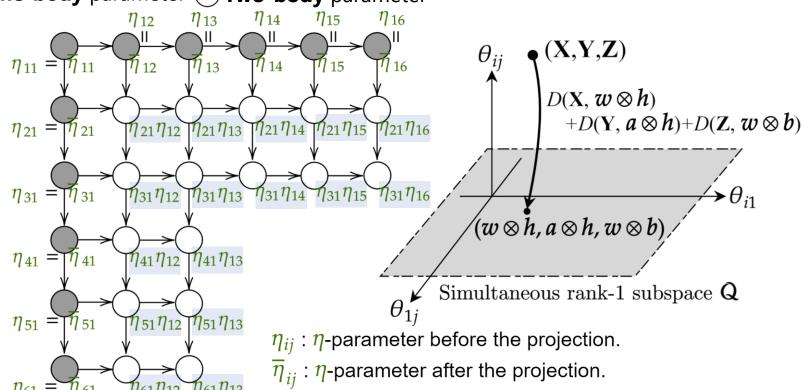
Simultaneous Rank-1 @-condition

Its all two-body θ -parameters are 0.

Simultaneous Rank-1 η -condition

$$\eta_{ij} = \eta_{i1}\eta_{1j}$$

One-body η -parameters do not change before or after the projection.


(X,Y,Z) is simultaneously rank-1 decomposable. \Leftrightarrow It can be written as $(w \otimes h, a \otimes h, w \otimes b)$.

Simultaneous Rank-1 θ -condition

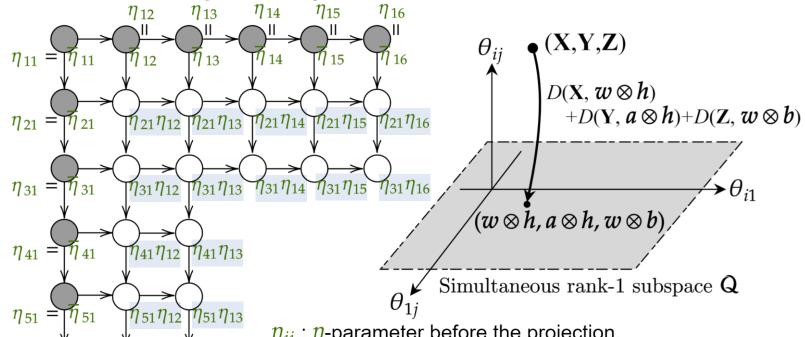
Its all two-body θ -parameters are 0.

Simultaneous Rank-1 η -condition

$$\eta_{ij} = \eta_{i1}\eta_{1j}$$

All η -parameters after the projection are identified.

(X,Y,Z) is simultaneously rank-1 decomposable. \Leftrightarrow It can be written as $(w \otimes h, a \otimes h, w \otimes b)$.


One-body parameter () **Two-body** parameter

Simultaneous Rank-1 θ -condition

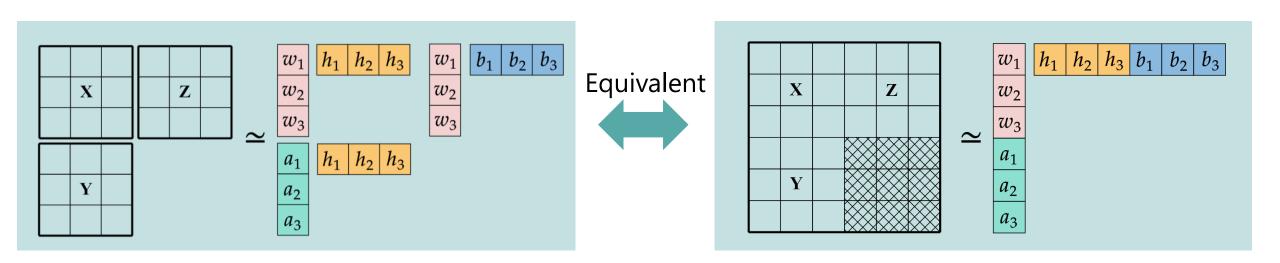
Its all two-body θ -parameters are 0.

Simultaneous Rank-1 η -condition -

$$\eta_{ij} = \eta_{i1}\eta_{1j}$$

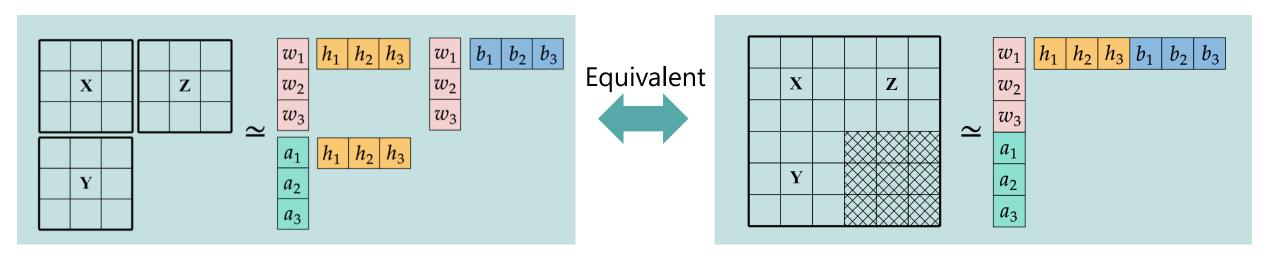
 η_{ij} : η -parameter before the projection.

 $\overline{\eta}_{ii}$: η -parameter after the projection.

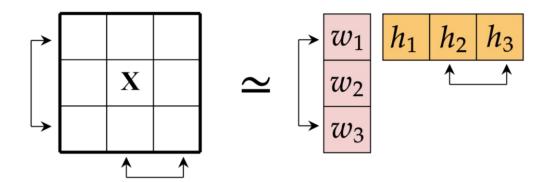

All η -parameters after the projection are identified. Using inversion formula, we found the projection destination.

Möbius inversion formula

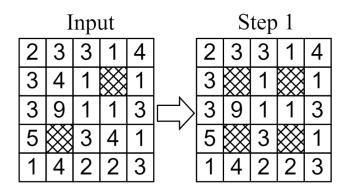
$$p_{\eta}(i,j) = \sum_{(k,l)} \mu_{ij}^{kl} \eta_{kl}$$


Rank-1 NMF with missing values

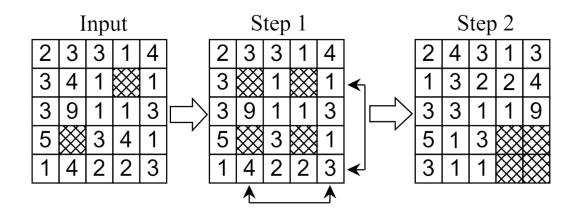
☐ NMMF can be viewed as a special case of NMF with missing values.



Rank-1 NMF with missing values

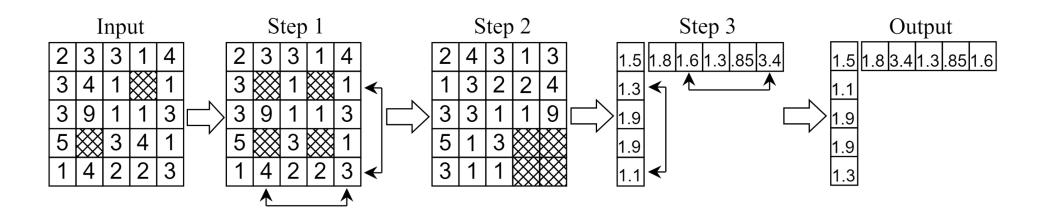

☐ NMMF can be viewed as a special case of NMF with missing values.

 \square NMF is homogeneous for row and column permutations



A1GM: Method

Step 1: Increase the number of missing values.


A1GM: Method

Step 1: Increase the number of missing values.

Step 2: Gather missing values in the bottom right.

A1GM: Method

Step 1: Increase the number of missing values.

Step 2: Gather missing values in the bottom right.

Step 3: Use the formula of rank-1 NMMF and repermutate.

Experiments on real data

☐ A1GM is compared with gradient-based KL-WNMF

- Relative runtime < 1 means A1GM is faster than KL-WNMF.
- Relative error > 1 means worse reconstruction error of A1GM than KL-WNMF.
- Increase rate is the ratio of # missing values after addition of missing values at step1.

DataSet	size	# missing values	increase rate	relative error	relative runtime
Autompg	(398, 8)	6	1	1	0.12957
DailySunSpot	(73718, 9)	3247	1	1	0.12845
CaliforniaHousing	(20640, 9)	207	1	1	0.11821
MTSLibrary	(1533078, 4)	1247722	1	1	0.18327
BigMartSaleForecas	(8522, 5)	1463	1	1	0.12699
BoardGameGeekData	(101375, 17)	21	1	1	0.14625
CreditCardApproval	(590, 7)	25	1.92	1.0018	0.12212
HumanResourceAnaly	(14999, 7)	519	1.96146	1.0168	0.11858
heartdisease	(303, 14)	6	2	1	0.12259
lungcancer	(32, 57)	5	2	1.0001	0.13803
PerthHousePrice	(33656, 14)	16585	2.61345	1.0004	0.15382
SleepData	(62, 8)	12	2.75	1.0211	0.18208
arrhythmia	(452, 280)	408	4.70588	1.0148	0.11387
Bostonhousing	(506, 14)	120	5.6	1.003	0.1097
LifeExpectancyData	(2938, 19)	2563	7.04097	5.7983	0.095773
HCCSurvivalDataSet	(165, 50)	826	8.3632	3.2898	0.07113
wiki4HE	(913, 53)	1995	18.10175	1.2363	0.066256

Experiments on real data

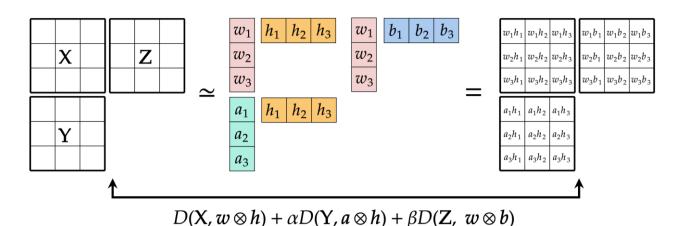
☐ A1GM is compared with gradient-based KL-WNMF

- Relative runtime < 1 means A1GM is faster than KL-WNMF.
- Relative error > 1 means worse reconstruction error of A1GM than KL-WNMF.
- Increase rate is the ratio of # missing values after addition of missing values at step1.

DataSet	size	# missing values	increase rate	relative error	relative runtime
Autompg	(398, 8)	6	1	1	0.12957
DailySunSpot	(73718, 9)	3247	1	1	0.12845
CaliforniaHousing	(20640, 9)	207	1	1	0.11821
MTSLibrary	(1533078, 4)	1247722	1	1	0.18327
BigMartSaleForecas	(8522, 5)	1463	1	1	0.12699
BoardGameGeekData	(101375, 17)	21	1	1	0.14625
CreditCardApproval	(590, 7)	25	1.92	1.0018	0.12212
HumanResourceAnaly	(14999, 7)	519	1.96146	1.0168	0.11858
heartdisease	(303, 14)	6	2	1	0.12259
lungcancer	(32, 57)	5	2	1.0001	0.13803
PerthHousePrice	(33656, 14)	16585	2.61345	1.0004	0.15382
SleepData	(62, 8)	12	2.75	1.0211	0.18208
arrhythmia	(452, 280)	408	4.70588	1.0148	0.11387
Bostonhousing	(506, 14)	120	5.6	1.003	0.1097
LifeExpectancyData	(2938, 19)	2563	7.04097	5.7983	0.095773
HCCSurvivalDataSet	(165, 50)	826	8.3632	3.2898	0.07113
wiki4HE	(913, 53)	1995	18.10175	1.2363	0.066256

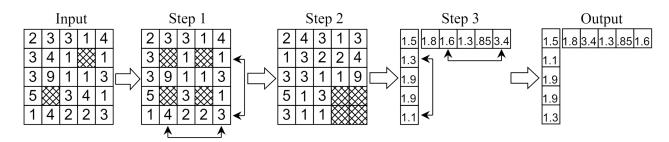
Experiments on real data

☐ A1GM is compared with gradient-based KL-WNMF


- Relative runtime < 1 means A1GM is faster than KL-WNMF.
- Relative error > 1 means worse reconstruction error of A1GM than KL-WNMF.
- Increase rate is the ratio of # missing values after addition of missing values at step1.

Much faster!

DataSet	size	# missing values	increase rate	relative error	relative runtime
Autompg	(398, 8)	6	1	1	0.12957
DailySunSpot	(73718, 9)	3247	1	1	0.12845
CaliforniaHousing	(20640, 9)	207	1	1	0.11821
MTSLibrary	(1533078, 4)	1247722	1	1	0.18327
BigMartSaleForecas	(8522, 5)	1463	1	1	0.12699
BoardGameGeekData	(101375, 17)	21	1	1	0.14625
CreditCardApproval	(590, 7)	25	1.92	1.0018	0.12212
HumanResourceAnaly	(14999, 7)	519	1.96146	1.0168	0.11858
heartdisease	(303, 14)	6	2	1	0.12259
lungcancer	(32, 57)	5	2	1.0001	0.13803
PerthHousePrice	(33656, 14)	16585	2.61345	1.0004	0.15382
SleepData	(62, 8)	12	2.75	1.0211	0.18208
arrhythmia	(452, 280)	408	4.70588	1.0148	0.11387
Bostonhousing	(506, 14)	120	5.6	1.003	0.1097
LifeExpectancyData	(2938, 19)	2563	7.04097	5.7983	0.095773
HCCSurvivalDataSet	(165, 50)	826	8.3632	3.2898	0.07113
wiki4HE	(913, 53)	1995	18.10175	1.2363	0.066256


Summary

Closed Formula of the Best Rank-1 NMMF

$$w_{i} = \frac{\sqrt{S(X)}}{S(X) + \beta S(Z)} \left\{ \sum_{j=1}^{J} X_{ij} + \beta \sum_{m=1}^{M} Z_{im} \right\} \qquad a_{n} = \frac{\sum_{j=1}^{J} Y_{nj}}{\sqrt{S(X)}}$$
$$h_{j} = \frac{\sqrt{S(X)}}{S(X) + \alpha S(Y)} \left\{ \sum_{i=1}^{I} X_{ij} + \alpha \sum_{n=1}^{N} Y_{nj} \right\} \qquad b_{m} = \frac{\sum_{i=1}^{I} Z_{im}}{\sqrt{S(X)}}$$

☐ A1GM: Faster Rank-1 NMF with missing values

Non-gradient-based method.

No worries about initial values, stopping criterion and learning rate.