

Unifying Regularisation Methods for Continual Learning

Frederik Benzing AISTATS 2022, Oral

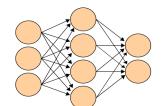
Science for ML

Gain Empirical & Theoretical Understanding of Complex Algorithms

- Understand
- Simplify & Consolidate
- Improve Algorithms

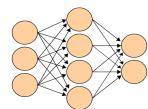
Continual Learning & Catastrophic Forgetting

1. Train to Distinguish Cats and Dogs



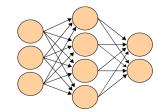
"Cat"

2. Train to Distinguish Apples and Oranges



"Orange"

3. Problem: What is this?



"Apple"

McCloskey and Cohen, 1989; Goodfellow et al., 2013

Approaches

Many different approaches

• i.i.d. Training & Approximations / Relaxations of it

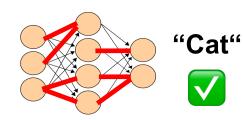
- Hard Setting: No old data
 - Regularisation Methods

e.g. Kirkpatrick et al., 2017; Chaudhry et al. 2019;

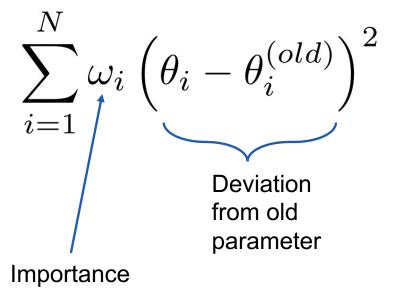
Regularisation Methods – EWC

(Kirkpatrick et al., 2017)

Parameter Importance



Auxiliary Loss



What does it mean to be important?

• EWC: Fisher Information (Kirkpatrick et al., 2017; Nguyen et al., 2017) (Approximate Laplace Posterior / Second-order Approximation of Loss)

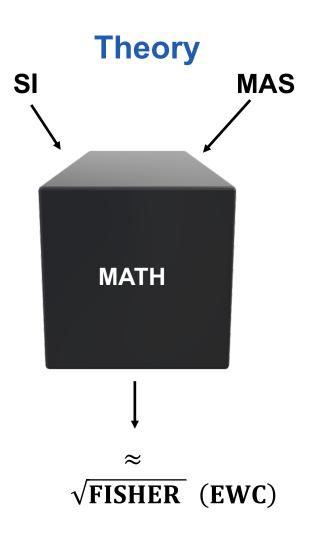
• SI: Different Heurisitc Importance (Zenke et al., 2017)

MAS: Different Heuristic Importance (Aljundi et al., 2018)

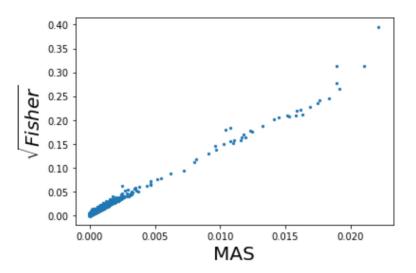
Follow ups

Nguyen et al., 2017; Ritter et al., 2018; Chaudhry et al., 2018; Schwarz et al., 2018; Liu et al., 2018; Park et al., 2019; Yin et al., 2020

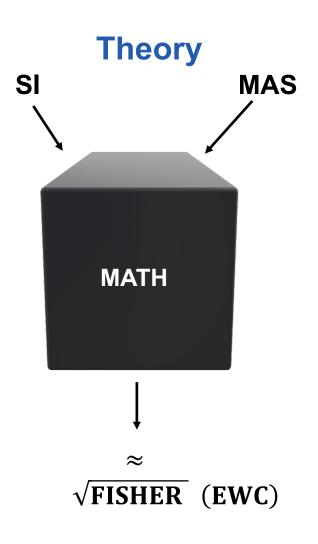
Unify



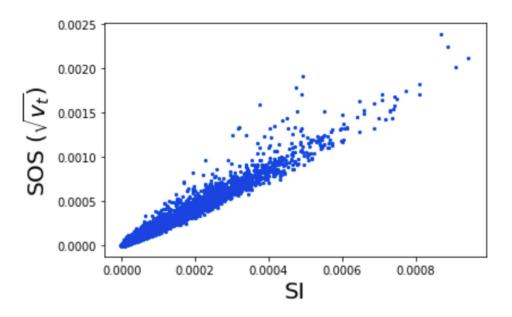
Practice



Unify



Practice

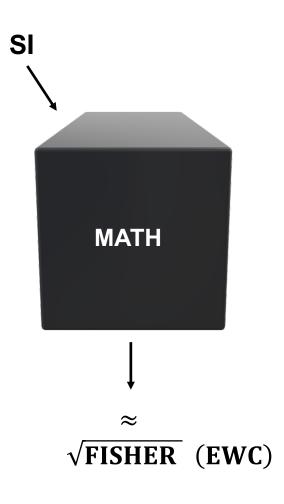


Unify

- Three key algorithms EWC, SI, MAS rely on same principle
- Theoretical Understanding of SI, MAS

Unification / Simplification

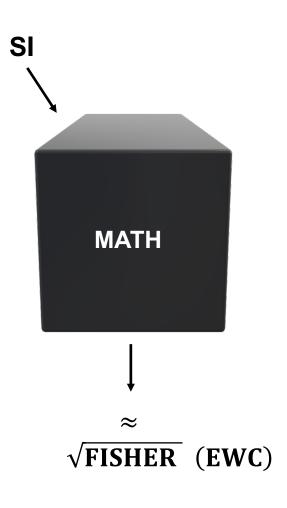
What is it good for?



Opening The Black Box

- Approximation Depends on Several Assumptions
 - Batch Size
 - Learning rate schedule
 - Optimizer (Adam/SGD/...)
 - •

What is it good for?



Opening The Black Box

 Approximation Depends on Several Assumptions

Is this bad?

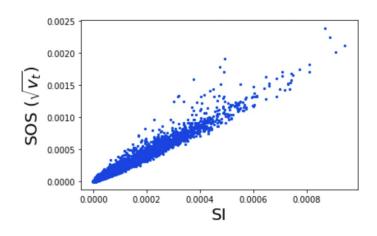
 No, it allows predictions and improvements!

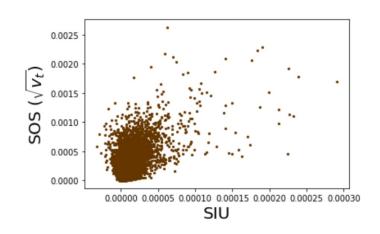
What is it good for? Experiments – SI

- SI has bias in approximation
 - Removing bias should be good

Algo.	P-MNIST	CIFAR
SI	97.2 ± 0.1	74.4 ± 0.2
SI Unbiased	96.3 ± 0.1	72.5 ± 0.3

- But: Bias needed for similarity to Fisher
 - Removing bias is bad





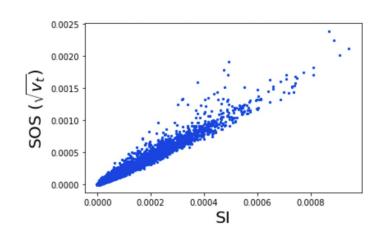
Departement of Computer Science

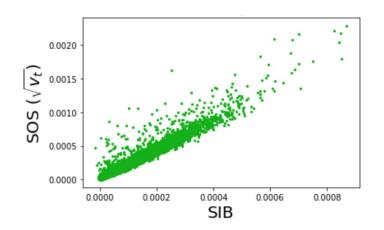
What is it good for? Experiments – SI

- SI has bias in approximation
 - Removing bias should be good

Algo.	P-MNIST	CIFAR
SI	97.2 ± 0.1	74.4 ± 0.2
SI Unbiased	96.3 ± 0.1	72.5 ± 0.3
SI Bias-Only	97.2 ± 0.1	75.1 ± 0.1

- But: Bias needed for similarity to Fisher
 - Removing bias is bad





Departement of Computer Science

What is it good for? Experiments – SI

- Approximation requires small batch size
- Otherwise link to Fisher is weak
- Prediction: Large Batch Size → Bad Performance

Algo.	P-MNIST	CIFAR	
SI	97.2 ± 0.1	74.4 ± 0.2	
SI(2048)	96.2 ± 0.1	70.0 ± 0.3	
SOS(2048)	97.1 ± 0.1	74.4 ± 0.1	

What is it good for? Experiments – SI

 Many Other Seemingly Small Choices affect SI, and break link to Fisher (e.g. learning rate decay)

Model	\mathbf{SI}	SOS	EWC*	MAS*
Small	25.1 ± 4.6	44.3 ± 0.1	45.1	40.6
Base	46.0 ± 0.1	43.3 ± 0.3	42.4	46.9
Wide	40.0 ± 0.2	46.0 ± 0.1	31.1	45.1
Deep	21.6 ± 0.7	30.0 ± 0.1	29.1	33.6

Science for ML

Gain Empirical & Theoretical Understanding of Complex Algorithms

- Understand
- Simplify & Consolidate
- Improve Algorithms