Counterfactual Explanation Trees: Transparent and Consistent Actionable Recourse with Decision Trees

Kentaro Kanamori (Hokkaido University)

Takuya Takagi (Fujitsu Ltd.)

Ken Kobayashi (Fujitsu Ltd. / Tokyo Institute of Technology)

Yuichi Ike (The University of Tokyo)

Background: Counterfactual Explanation (CE)

Explain an "action" for obtaining the desired prediction result

- Post-hoc methods for extracting "local explanations" from complex ML models have been massively studied.
- Counterfactual Explanation (CE) [Wachter+ 18]
 - As a local explanation for an instance $x \in \mathcal{X}$, CE provides an action a^* for obtaining the desired prediction result $y^* \in \mathcal{Y}$ from a model $f: \mathcal{X} \to \mathcal{Y}$.

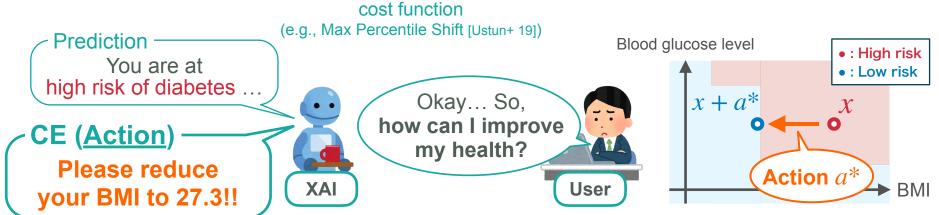
$$a^* = \operatorname{arg\,min}_{a \in \mathcal{A}} c(a \mid x)$$
 subject to $f(x + a) = y^*$

Background: Counterfactual Explanation (CE)

Explain an "action" for obtaining the desired prediction result

- Post-hoc methods for extracting "local explanations" from complex ML models have been massively studied.
- Counterfactual Explanation (CE) [Wachter+ 18]
 - As a local explanation for an instance $x \in \mathcal{X}$, CE provides an <u>action a^* </u> for obtaining the desired prediction result $y^* \in \mathcal{Y}$ from a model $f: \mathcal{X} \to \mathcal{Y}$.

$$a^* = \arg\min_{a \in \mathcal{A}} c(a \mid x)$$
 subject to $f(x + a) = y^*$

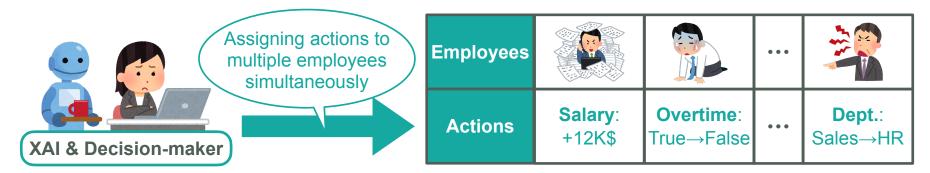


Motivation: CE for "Multiple" Instances

Assign actions to multiple instances $X \subset \mathcal{X}$ simultaneously

- Actions a optimized for individuals x are not necessarily executed by the individuals themselves [Karimi+ 20].
 - Ex.) Attrition risk prediction (e.g. *IBM HR Analytics Employee Attrition*1*):

 A company assigns actions to the employees to reduce their attrition risk.
- An action a for an individual x (e.g., increasing salary) may <u>affect</u> other individuals (e.g. changing payroll systems in the company).
 - ▶ In such a case, optimizing an action for each of the individuals is insufficient.



Desideratum and Our Approach

Learn a transparent and consistent model assigning actions

Desideratum of CE for multiple instances:

Why am I transferred?

- Transparency [Rawal+ 20]:
 We should explain how actions are determined for entire individuals.
- Consistency [Rudin+ 19]:
 We should provide reasons of actions without conflicts between individuals.
 - Ex.) A reason (rule) "Age>35 & Dept.=Sales" conflicts between two employees because both of them satisfy the rule.

Employees			
Features	Age: 37 Dept.: Sales Overtime: False Performance: A	Age: 42 Dept.: Sales Overtime: False Performance: B	
Actions	Salary: +12K\$	Dept.: Sales → HR	

Our approach:

- Idea 1. Design a model that assigns effective actions over the entire input space \mathcal{X} in a transparent and consistent way.
- Idea 2. Design an algorithm for learning such a model from given instances $X \subset \mathcal{X}$.

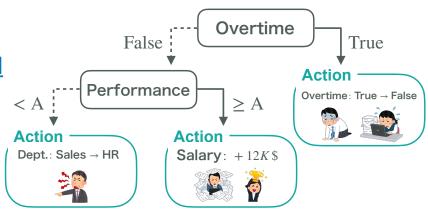
Our Framework: Counterfactual Explanation Tree

Decision tree for assigning effective actions over input space

Def. Counterfactual Explanation Tree (CET)

For a set of feasible actions \mathscr{A} , Counterfactual Explanation Tree (CET) is a <u>decision tree $h: \mathscr{X} \to \mathscr{A}$ </u> assigning an action for an input instance $x \in \mathscr{X}$.

- Advantages of a decision tree:
 - It can provide <u>a reason of each assigned</u> <u>action as a form of rules</u> (transparency).
 - It guarantees to assign <u>a unique pair</u>
 of an action and its rule (consistency).
- Learning a CET h from $X \subset \mathcal{X}$ based on **Invalidity** score $i_{\gamma}(a \mid x) := c(a \mid x) + \gamma \cdot l(f(x+a), y^*)$.
 - Whether the action a = h(x) assigned by h is <u>effective</u> for each instance $x \in X$.



(w.r.t. constraint $f(x + a) = y^*$)

Cost

Our Framework: Learning Algorithm for CET

Learn a CET from given instances by stochastic local search

Prob. Learning CET

Given instances $X \subseteq \mathcal{X}$ and parameters $\gamma, \lambda > 0$, find a CET h^* such that:

$$h^* = \arg\min_{h \in \mathcal{H}} \frac{1}{|X|} \sum_{x \in X} i_{\gamma}(h(x) \mid x) + \lambda \cdot |\mathcal{L}(h)|, \quad \text{Theorem 1}$$

$$\text{# Leaves}$$

$$\text{Average invalidity of actions} \quad \text{(= # Actions)}$$

where, \mathscr{H} is a set of CETs $h: \mathscr{X} \to \mathscr{A}$, and $\mathscr{L}(h)$ is the set of leaves in h.

- Adjust trade-off between <u>effectiveness of actions by h and interpretability of h.</u>
- Algorithm: stochastic local search (cf. [Wang 19] [Pan+ 20])
 - Branching rules in the internal nodes of the current CET $h^{(t)}$ are randomly updated by some edit operations (e.g., *insert*, *delete*, and *replace*).
 - As its subroutine, an action assigned to instances in each leaf is optimized by extended MILO (cf. [Ustun+ 19] [Kanamori+ 20])

Experiments (IBM Attrition dataset)

CET could assign effective actions in an interpretable way

- Comparison with "AReS [Rawal+ 20]" based on a <u>rule set</u>.
 - Quantitative comparison: effectiveness of actions assigned by each method.
 - Qualitative comparison: <u>human-interpretability</u> of each method by user study.

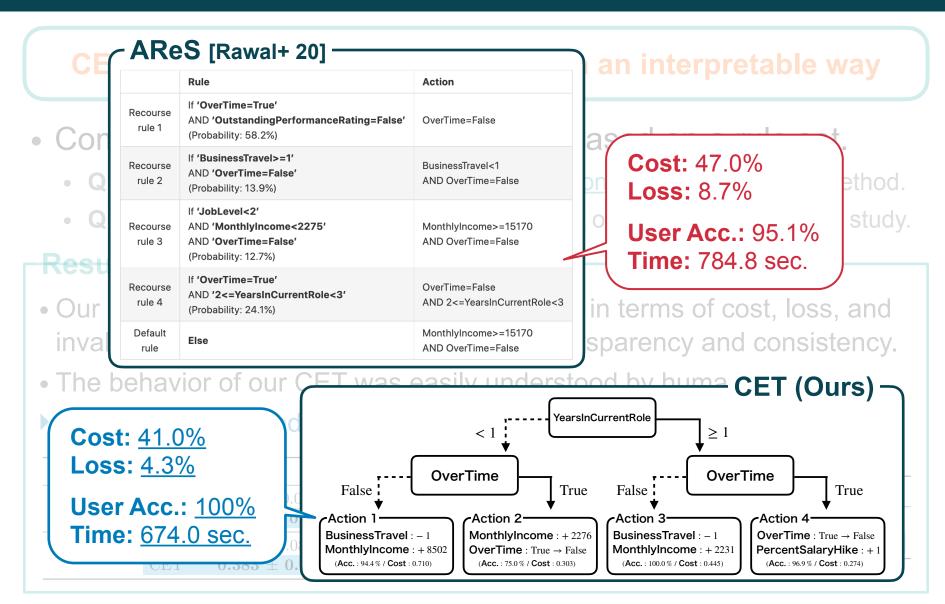
Results

- Our CET could assign more effective actions in terms of cost, loss, and invalidity than AReS, while CET ensured transparency and consistency.
- The behavior of our CET was easily understood by human-users.
- Our CET succeeded to assign effective actions in an interpretable way!

Dataset	Method	Cost	Loss	Invalidity
Train	AReS	0.436 ± 0.06	0.435 ± 0.07	0.871 ± 0.04
паш	CET	$\textbf{0.349}\pm\textbf{0.1}$	$\textbf{0.4}\pm\textbf{0.11}$	$\textbf{0.749}\pm\textbf{0.05}$
Test	AReS	0.45 ± 0.08	$\textbf{0.298} \pm \textbf{0.09}$	0.748 ± 0.09
	CET	$\textbf{0.383}\pm\textbf{0.12}$	0.318 ± 0.19	$\textbf{0.701}\pm\textbf{0.12}$

Method	User Acc.	Time [s]
AReS	95.12%	784.8 ± 202
CET	100.0%	674.0 ± 392

Experiments (IBM Attrition dataset)



Summary of Our Contributions

A new framework of CE assigning actions to multiple instances

- We introduce Counterfactual Explanation Tree (CET), that assigns effective actions to input instances with a decision tree.
 - Transparency: explain how actions are determined over the entire input space.
 - Consistency: explain reasons of assigned actions without conflicts between instances.
- We propose an efficient algorithm for learning a CET from given instances based on stochastic local search and MILO.
- By experiments and user studies, we confirmed the efficacy and interpretability of our CET.
- Future Work:
 - Scalability of our learning algorithm
 - Modeling interactions between instances

