# Is Bayesian Model-Agnostic Meta Learning Better than Model-Agnostic Meta Learning, Provably?

Lisha Chen, Tianyi Chen

Rensselaer Polytechnic Institute

03/14/2022





## Definition of meta learning

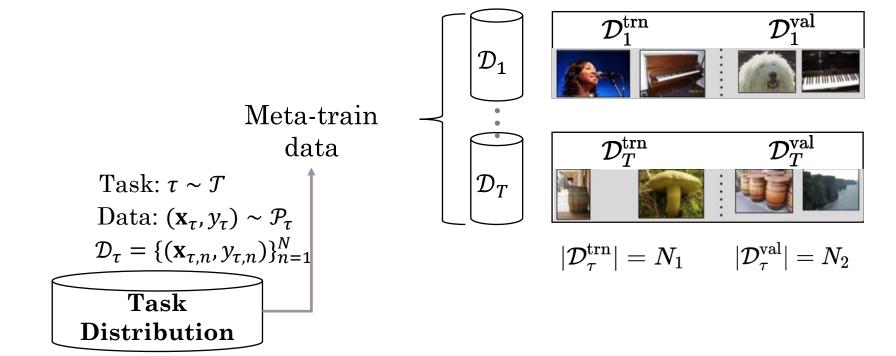
#### Meta-learning (learning to learn):

To learn a model that can well adapt or generalize to new tasks and new environments that have never been encountered during training time.

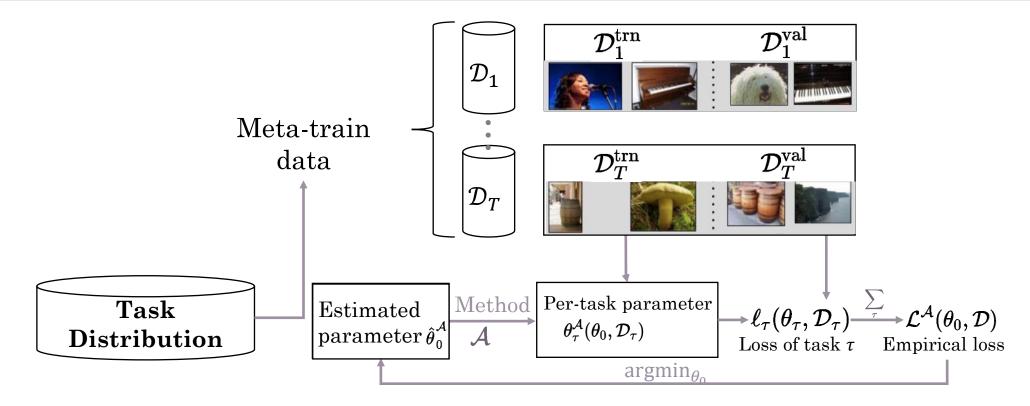
#### Prior work (incomplete)

[Bengio et al '90]
[Maclaurin et al '15]
[Vinyals et al '16]
[Santoro et al '16]
[Wichrowska et al '17]
[Finn et al '17]

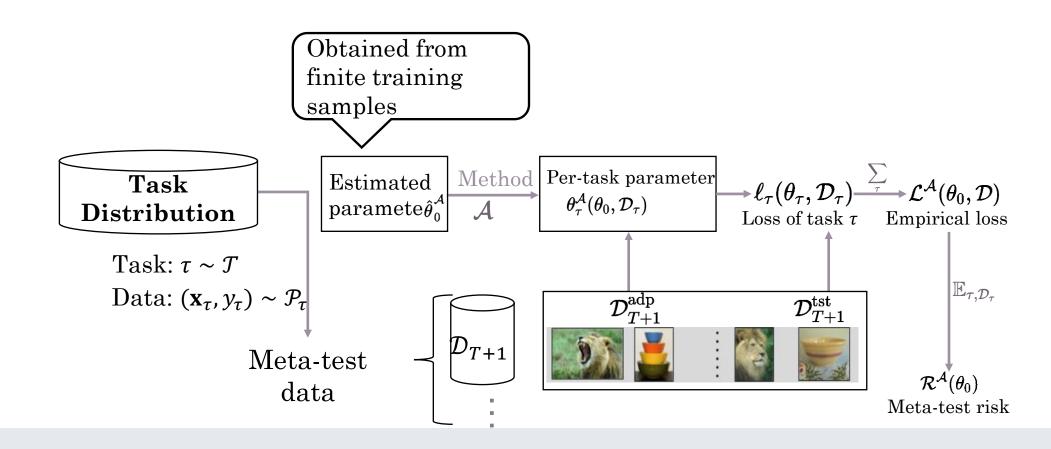
## Meta learning setup



## Meta learning setup



## Meta learning setup

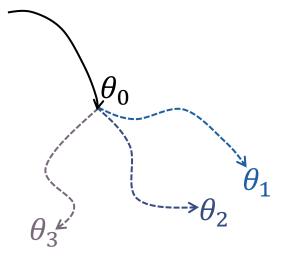


## Basis of comparison

$${\hat heta}_{ au}^{
m er}ig( heta_0, \mathcal{D}_{ au}^{
m trn}ig) = heta_0$$

$$\theta_0(\theta_1 \ \theta_2 \ \theta_3)$$

$${\hat{ heta}}_{ au}^{\mathcal{A}}ig( heta_0, \mathcal{D}_{ au}^{ ext{trn}}ig) 
eq heta_0$$



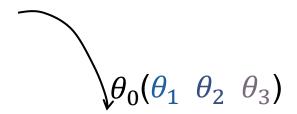
$$\hat{ heta}_{ au}^{\mathcal{A}}ig( heta_0,\mathcal{D}_{ au}^{ ext{trn}}ig)=?$$

### Baseline methods - ERM

#### General formulations (empirical loss)

**ERM** 

$$\mathcal{L}^{ ext{er}}( heta_0, \mathcal{D}) = rac{1}{T} \sum_{ au=1}^T \ell_ au( heta_0, \mathcal{D}_{ au, N})$$



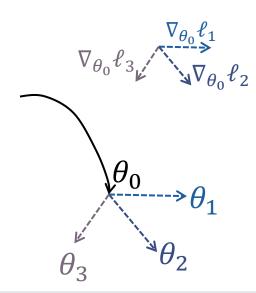
#### Baseline methods - MAML

#### General formulations (empirical loss)

#### MAML [Finn et al '17]

$$egin{aligned} \mathcal{L}^{ ext{ma}}( heta_0, \mathcal{D}) &= rac{1}{T} \sum_{ au=1}^T \ell_ au \Big( \hat{ heta}_ au^{ ext{ma}}_ au ig( heta_0, \mathcal{D}_{ au, N_1}^{ ext{trn}} ig), \mathcal{D}_{ au, N_2}^{ ext{val}} ig) \ ext{s.t.} \ \hat{ heta}_ au^{ ext{ma}}_ au ig( heta_0, \mathcal{D}_{ au, N_1}^{ ext{trn}} ig) &= heta_0 - lpha 
abla_ heta_0 \ell_ au ig( heta_0, \mathcal{D}_{ au, N_1}^{ ext{trn}} ig) \end{aligned}$$

$$\mathrm{s.t.}\ \hat{\theta}_{\,\tau}^{\,\mathrm{ma}}\big(\theta_0,\mathcal{D}_{\tau,N_1}^{\mathrm{trn}}\big) = \theta_0 - \alpha \nabla_{\theta_0} \ell_{\tau}\big(\theta_0,\mathcal{D}_{\tau,N_1}^{\mathrm{trn}}\big)$$



#### Baseline methods - iMAML

#### General formulations (empirical loss)

#### iMAML [Rajeswaran et al '19]

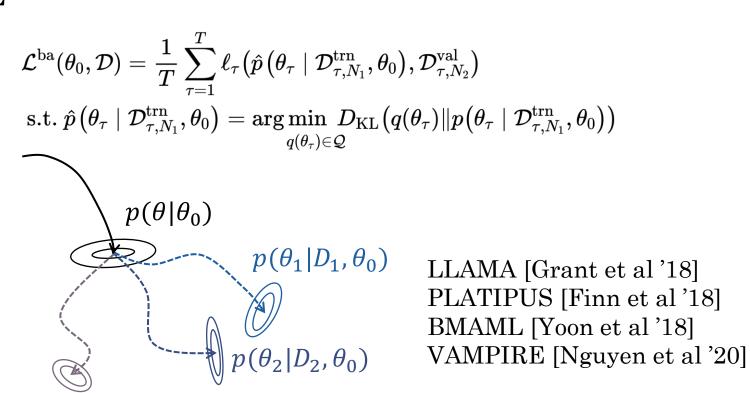
$$egin{aligned} \mathcal{L}^{ ext{im}}( heta_0,\mathcal{D}) &= rac{1}{T} \sum_{ au=1}^T \ell_ au \Big( \hat{ heta}_ au^{ ext{im}}_ au ig( heta_0, \mathcal{D}_{ au,N_1}^{ ext{trn}} ig), \mathcal{D}_{ au,N_2}^{ ext{val}} ig) \ & ext{s.t.} \; \hat{ heta}_ au^{ ext{im}}_ au ig( heta_0, \mathcal{D}_{ au,N_1}^{ ext{trn}} ig) &= rg \min_{ heta_ au} - \log p ig( heta_ au \mid \mathcal{D}_{ au,N_1}^{ ext{trn}}, heta_0 ig) \ & ext{} \ egin{align*} heta_0 \ heta_$$

#### Baseline methods - BaMAML

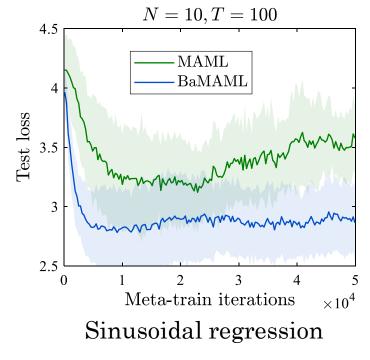
#### General formulations (empirical loss)

 $p(\theta_3|D_3,\theta_0)$ 

#### **BaMAML**



## Compare the baseline methods



MiniImageNet classification accuracy

| Method                  | 1-shot 5-way     |
|-------------------------|------------------|
| MAML                    | $48.70 \pm 1.84$ |
| iMAML                   | $49.30 \pm 1.88$ |
| $\operatorname{BaMAML}$ | $51.54 \pm 0.74$ |

Empirically, BaMAML has better accuracy but is more challenging to solve than MAML.

#### Goal of this work

#### **Questions**:

- ☐ If and when is BaMAML better than MAML, provably?
- ☐ What are the decomposable factors that make BaMAML better?

#### **Contributions:**

First theoretical understanding for above questions.

#### A unified view

$$egin{aligned} \ell_{ au}( heta_0, \mathcal{D}_{ au}) &= -\log pig(\mathbf{y}_{ au}^{ ext{val}} \mid \mathbf{X}_{ au}^{ ext{val}}, heta_0, \mathcal{D}_{ au}^{ ext{trn}}ig) \ &= -\log \int pig(\mathbf{y}_{ au}^{ ext{val}} \mid \mathbf{X}_{ au}^{ ext{val}}, heta_{ au}ig) pig( heta_{ au} \mid heta_0, \mathcal{D}_{ au}^{ ext{trn}}ig) d heta_{ au} \ & ext{Likelihood} \end{aligned}$$

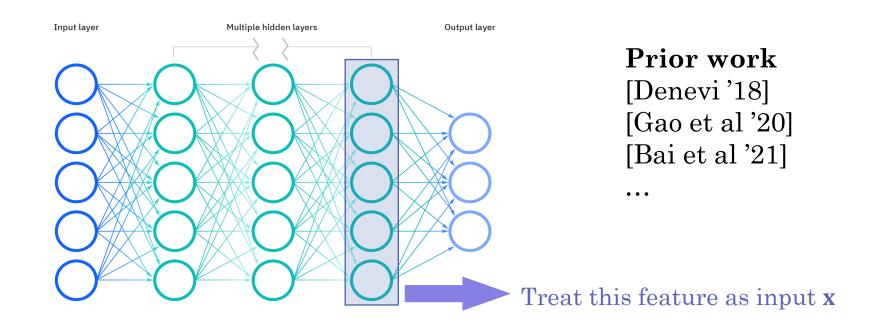
$$\begin{array}{c} \text{Posterior} \\ \text{Bayes rule} \\ pig( heta_{ au} \mid heta_0, \mathcal{D}_{ au}^{ ext{trn}}ig) &= rac{pig(\mathcal{D}_{ au}^{ ext{trn}} \mid heta_{ au}ig) pig( heta_{ au} \mid heta_0ig)}{pig(\mathcal{D}_{ au}^{ ext{trn}} \mid heta_0ig)} \end{aligned}$$

#### A unified view

$$egin{aligned} \ell_{ au}( heta_0,\mathcal{D}_{ au}) &= -\log\int pig(\mathbf{y}_{ au}^{ ext{val}}\mid\mathbf{X}_{ au}^{ ext{val}}, heta_{ au}ig)pig( heta_{ au}\mid heta_0,\mathcal{D}_{ au}^{ ext{trn}}ig)d heta_{ au} \end{aligned} egin{aligned} ext{Point estimate} & ext{e.g. MAML,} \ ext{iMAML} \ \deltaig( heta_{ au}-\hat{ heta}_{ au}^{\mathcal{A}}ig) \ & ext{to} \ ext{d} \end{pmatrix} \ \ell_{ au}( heta_0,\mathcal{D}_{ au}) &= -\log pig(\mathbf{y}_{ au}^{ ext{val}}\mid\mathbf{X}_{ au}^{ ext{val}},\hat{ heta}_{ au}^{\mathcal{A}}( heta_0,\mathcal{D}_{ au}^{ ext{trn}})ig) \end{aligned}$$

Now we are ready to compare these methods in the same framework.

## Meta linear regression – data model



#### Data model

$$y_{\tau} = \theta_{\tau}^{\mathrm{gt} \top} \mathbf{x}_{\tau} + \epsilon_{\tau}, \text{ with } \epsilon_{\tau} \stackrel{\mathsf{i.i.d.}}{\sim} \mathcal{N}\left(0, \sigma_{\tau}^{2}\right) \quad \mathbf{Q}_{\tau} = \mathbb{E}\left[\mathbf{x}_{\tau} \mathbf{x}_{\tau}^{\top} \mid \tau\right].$$

## Loss function under meta linear regression

$$y_{\tau} = \theta_{\tau}^{\text{gt}^{\top}} \mathbf{x}_{\tau} + \epsilon_{\tau}, \text{ with } \quad \epsilon_{\tau} \overset{\text{i.i.d.}}{\sim} \mathcal{N}\left(0, \sigma_{\tau}^{2}\right) \quad \mathbf{Q}_{\tau} = \mathbb{E}\left[\mathbf{x}_{\tau} \mathbf{x}_{\tau}^{\top} \mid \tau\right].$$

$$\text{Recall } \ell_{\tau}(\theta_{0}, \mathcal{D}_{\tau}) = -\log \int p(\mathbf{y}_{\tau}^{\text{val}} \mid \mathbf{X}_{\tau}^{\text{val}}, \theta_{\tau}) p(\theta_{\tau} \mid \theta_{0}, \mathcal{D}_{\tau}^{\text{trn}}) d\theta_{\tau}$$

$$\text{Assumption: Given } \hat{\theta}_{\tau}^{\mathcal{A}}, p(y_{\tau} \mid \mathbf{x}_{\tau}, \hat{\theta}_{\tau}^{\mathcal{A}}) = \mathcal{N}(\hat{\theta}_{\tau}^{\mathcal{A}^{\top}} \mathbf{x}_{\tau}, \sigma_{\tau}^{2})$$

$$\text{Bayes rule}$$

$$p(\theta_{\tau} \mid \mathcal{D}_{\tau}^{\text{trn}}, \theta_{0}) \propto p(\mathcal{D}_{\tau}^{\text{trn}} \mid \theta_{\tau}) p(\theta_{\tau} \mid \theta_{0}),$$

$$\text{Prior is Gaussian } p(\theta_{\tau} \mid \theta_{0}) \propto \exp\left\{-\gamma \|\theta_{\tau} - \theta_{0}\|_{2}^{2}\right\}$$

$$\gamma \text{ is the weight of the prior}$$

## **Basic assumptions**

- 1. (Bounded eigenvalues) For any  $\tau, 0 < \underline{\lambda} \le \lambda(\mathbf{Q}_{\tau}) \le \overline{\lambda}$
- 2. (Ground truth task parameter distribution)
  - 1)  $\theta_{\tau}^{\mathrm{gt}}$  is independent of  $\mathbf{X}_{\tau}$ .
  - 2) the individual entries  $\left\{\theta_{\tau,i}^{\mathrm{gt}}\right\}_{i\in[d],\tau\in[T]}$  are independent and  $\mathcal{O}\left(R/\sqrt{d}\right)$ -sub-Gaussian, where R is a constant.
  - 3)  $\|\mathbb{E}[\theta_{\tau}^{\text{gt}}]\| \leq M$ .

## Meta linear regression - Risk decomposition

$$\mathcal{R}^{\mathcal{A}}(\hat{\boldsymbol{\theta}}_{0}^{\mathcal{A}}) = \underbrace{\mathcal{R}^{\mathcal{A}}(\boldsymbol{\theta}_{0}^{\mathcal{A}})}_{\text{optimal popultation risk}} + \underbrace{\left\|\hat{\boldsymbol{\theta}}_{0}^{\mathcal{A}} - \boldsymbol{\theta}_{0}^{\mathcal{A}}\right\|_{\mathbb{E}_{\tau}[\mathbf{W}_{\tau}^{\mathcal{A}}]}^{2}}_{\text{statistical error } \mathcal{E}_{\mathcal{A}}^{2}(\hat{\boldsymbol{\theta}}_{0}^{\mathcal{A}})}$$

$$heta_0^{\mathcal{A}} := rg\min_{ heta_0} \mathcal{R}^{\mathcal{A}}( heta_0)$$

Analyze optimal population risk and statistical error separately.

## Comparison of optimal population risk

#### -Theorem 1 (informal)-

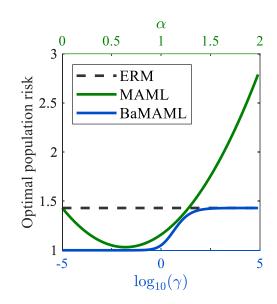
Under Assumptions 1-2,

#### ERM vs MAML

Can find  $\alpha$  in a range that  $\mathcal{R}^{\mathrm{ma}}(\theta_0^{\mathrm{ma}}) < \mathcal{R}^{\mathrm{er}}(\theta_0^{\mathrm{er}}).$ 

#### MAML vs BaMAML

Can find  $\gamma$  in a range that  $\mathcal{R}^{\mathrm{ba}}(\theta_0^{\mathrm{ba}}) < \mathcal{R}^{\mathrm{ma}}(\theta_0^{\mathrm{ma}}).$ 



☐ Essentially,

$$\mathcal{R}^{ ext{er}}( heta_0^{ ext{er}}) > \inf_{lpha} \mathcal{R}^{ ext{ma}}( heta_0^{ ext{ma}}; lpha) > \inf_{\gamma} \mathcal{R}^{ ext{ba}}ig( heta_0^{ ext{ba}}; \gammaig)$$

- $\square$  If  $\alpha$  not properly chosen, MAML can be worse than ERM, but not for iMAML.
- $\Box$  Choice of  $\gamma$  reflects trade-off between adaptation speed and adaptation performance.

#### Precise characterization of statistical error

#### Assumption 3 (Linear centroid model).

1) 
$$\mathbf{x}_{\tau} \stackrel{\text{iid}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_{\text{d}})$$

$$egin{aligned} 1) & \mathbf{x}_{ au} \overset{ ext{iid}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_{ ext{d}}) \ 2) & \operatorname{Cov}_{ heta_{ au}^{ ext{gt}}} ig[ heta_{ au}^{ ext{gt}}ig] = rac{R^2}{d} \mathbf{I}_{ ext{d}}. \end{aligned}$$

#### **Implications**

Assumption 3 (1) assumes  $\mathbf{Q}_{\tau} = \mathbf{I}_d$ , therefore  $\mathbf{W}_{\tau}^{\mathcal{A}} = w_{\mathcal{A}}\mathbf{I}_d$ . This implies for different methods  $\mathcal{A}, \theta_0^{\mathcal{A}} = \mathbb{E}_{\tau}[\theta_{\tau}^{\mathrm{gt}}].$ 

#### Precise characterization of statistical error

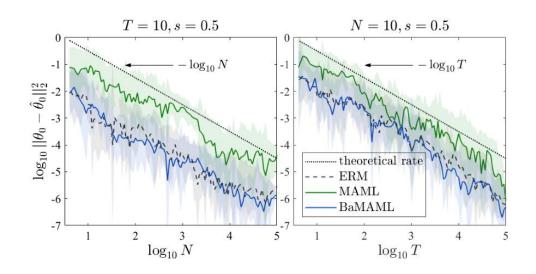
#### Theorem 2 (informal)

Define 
$$C^{\mathcal{A}} := rac{1}{d} igg\langle \mathbb{E}^{-2} ig[ \hat{\mathbf{W}}_{ au,N}^{\mathcal{A}} ig], \mathbb{E} ig[ ig( \hat{\mathbf{W}}_{ au,N}^{\mathcal{A}} ig)^2 ig] igg
angle$$

 $\varrho$  as higher order term.

Under Assumptions 1-3, the following hold with high probability

$$\left\|w_{\mathcal{A}} \left\| heta_0 - \hat{ heta}_0
ight\|_2^2 = rac{R^2}{T} \Biggl(w_{\mathcal{A}} C^{\mathcal{A}} + \widetilde{\mathcal{O}} \Biggl(\sqrt{rac{d}{T}}\Biggr) + \widetilde{\mathcal{O}} \Biggl(rac{1}{\sqrt{d}}\Biggr)\Biggr) + arrho$$



Now we are ready to quantify the dominating constant exactly.

## Sharp comparison of statistical error

☐ Limits of dominating constants

$$\inf_{egin{subarray}{c} lpha>0 & d, N o\infty \ s\in(0,1) & d/N o\eta \end{array}} C^{\mathrm{ma}} = \inf_{egin{subarray}{c} \gamma>0 & d, N o\infty \ s\in(0,1) & d/N o\eta \end{array}} C^{\mathrm{im}} = 1+\eta.$$
  $\inf_{egin{subarray}{c} \gamma>0 & d, N o\infty \ s\in(0,1) & d/N o\eta \end{array}} C^{\mathrm{ba}} igg\{ = 1, & \eta\leq 1 \ \leq \eta, & \eta>1 \ s\in(0,1) & d/N o\eta \end{matrix}$ 

☐ Under linear centroid model, the dominating constant in the statistical error with optimally tuned hyperparameters satisfies,

BaMAML < MAML = iMAML

## **Concluding remarks**

- □ BaMAML (and iMAML) has better adaptation flexibility than one-step MAML, leading to smaller optimal population risk.
- □ For statistical error, all methods have the same dependence on *N*, *T*, *d*, and their difference lies in the constant. BaMAML has better constant than point estimate (iMAML & MAML) due to model averaging.
- □ Under linear centroid model, the dominating constant in the statistical error with optimally tuned hyperparameters satisfies,

  BaMAML ≤ MAML = iMAML

Justify the theoretical benefits of BaMAML over MAML.

#### References

Lisha Chen and Tianyi Chen. ``Is Bayesian Model-Agnostic Meta Learning Better than Model-Agnostic Meta Learning, Provably?," *Proc. of AISTATS*, 2022.

Yu Bai et al. "How Important is the Train-Validation Split in Meta-Learning?," *Proc. of ICML*, 2021.

Katelyn Gao and Ozan Sener. "Modeling and Optimization Trade-off in Meta-learning," *Proc. of NeurIPS*, 2020.

Erin Grant et al. "Recasting Gradient-Based Meta-Learning as Hierarchical Bayes," *Proc. of ICLR*, 2018.

Taesup Kim et al. "Bayesian Model-Agnostic Meta-Learning," Proc. of NIPS, 2018.

## Thank you!

Contact: chenl21@rpi.edu

Code: https://github.com/lisha-chen/Bayesian-MAML-vs-MAML







