Optimal Rates of (Locally) Differentially Private Heavy-tailed Multi-Armed Bandits

Youming Tao ¹ Yulian Wu*² Peng Zhao ³ Di Wang ²

¹School of Computer Science Shandong University

²Division of Computer, Electrical, and Mathematical Sciences and Engineering King Abdullah University of Science and Technology

> ³Department of Computer Science Nanjing University

> > March 2022

- Introduction
 - Motivation
 - Problem Setting
 - Contributions

- 2 Results
 - Methods
 - Experiments

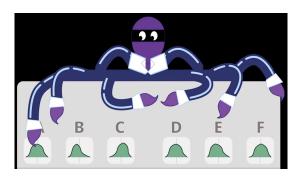
Motivation

- Bandits: exploration-exploitation dilemma in decision-making with uncertainty.
- Differential Privacy (DP): privacy issue in bandit: rewards.
- Previous assumptions: bounded/ sub-Gaussian distributions for rewards.
- The rewards in real world: heavy-tailed distributions.
 - modeling stock prices
 - preferential attachment in social networks
 - online behavior on websites
- Problem: multi-armed bandits (MAB) with heavy-tailed rewards in both central and local DP models.

- Introduction
 - Motivation
 - Problem Setting
 - Contributions
- 2 Results
 - Methods
 - Experiments

MAB with Heavy-tailed Rewards

- T time steps, K arms
- Unknown heavy-tailed $x_t \overset{i.i.d}{\sim} \mathcal{X}_{a_t} : \mathbb{E}_{X \sim \mathcal{X}_a}[|X|^{1+\nu}] \leq u, \quad v \in (0,1]$



- Bounded: $X \in [0,1]$
- Sub-gaussian: $\mathbb{E}e^{\lambda(X-\mathbb{E}X)} \leq e^{\frac{\sigma^2\lambda^2}{2}}, \mathbb{E}e^{\lambda(\mathbb{E}X-X)} \leq e^{\frac{\sigma^2\lambda^2}{2}}, \sigma \in [0,1]$

[1]. https://multithreaded.stitchfix.com/blog/2020/08/05/bandits/

Performance Criteria

Definition (Regret)

The learner aims to maximize her/his expected cumulative reward over time, *i.e.*, to minimize the (expected) cumulative *regret*, defined as

$$\mathcal{R}_{\mathcal{T}} \triangleq T\mu^* - \mathbb{E}\left[\sum_{t=1}^{T} x_t\right],\tag{1}$$

where $\mu^* = \max_{a \in [K]} \mu_a$ and μ_a is the mean of distribution \mathcal{X}_a for $a \in [K]$.

Differential Privacy and Local Differential Privacy

- Challenge: in online(bandit) learning settings, the algorithm might not see all of the data before making a decision.
- Strategy: define differential privacy (DP) in the **stream setting** since rewards are released continually.

Definition (Differential Privacy)

An algorithm \mathcal{M} is ϵ -differentially private (DP) if for any adjacent streams σ and σ' (i.e. σ and σ' differ at only one time step), and any measurable subset \mathcal{O} of the output space of \mathcal{M} , we have

$$\mathbb{P}\left[\mathcal{M}(\sigma) \in \mathcal{O}\right] \leq e^{\epsilon} \cdot \mathbb{P}\left[\mathcal{M}(\sigma') \in \mathcal{O}\right].$$

Definition (Local Differential Privacy)

An algorithm $\mathcal{M}: \mathcal{X} \to \mathcal{Y}$ is said to be ϵ -locally differentially private (LDP) if for any $x, x' \in \mathcal{X}$, and any measurable subset $\mathcal{O} \subset \mathcal{Y}$, it holds that $\mathbb{P}\left[\mathcal{M}(x) \in \mathcal{O}\right] \leq e^{\epsilon} \cdot \mathbb{P}\left[\mathcal{M}(x') \in \mathcal{O}\right]$.

Differential Privacy and Local Differential Privacy

- Differential Privacy: a trusted curator collects all the data and then preserves the privacy.
- Local Differential Privacy: data providers only trust their local single devices and privatize their individual data before sending to the collector.

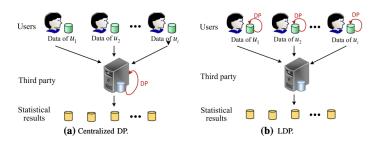


Figure: DP and LDP

[1].Zhao, Ping, et al. "A survey of local differential privacy for securing internet of vehicles." The Journal of Supercomputing 76.11 (2020): 8391-8412.

8 / 25

- Introduction
 - Motivation
 - Problem Setting
 - Contributions

- 2 Results
 - Methods
 - Experiments

Contributions

- ϵ -DP model
 - * DP Robust Upper Confidence Bound (UCB) algorithm
 - Instance-dependent regret upper bound
 - DP Robust Successive Elimination (SE) algorithm
 - Instance-dependent regret upper and lower bounds (optimal)
 - Instance-independent regret upper bound
- ϵ -LDP model.
 - LDP Robust SE algorithm
 - Instance-dependent regret upper and lower bounds (optimal)
 - Instance-independent regret upper and lower bounds (near-optimal)

Contributions

Summary of our contributions

Problem	Model	Upper Bound	Lower Bound
Heavy-tailed Reward (Instance-dependent Bound)	ε-DP	$O\left(\frac{\log T}{\epsilon}\sum_{\Delta_a>0}\left(\frac{1}{\Delta_a}\right)^{\frac{1}{\nu}}+\max_a\Delta_a\right)$	$\Omega\left(\frac{\log T}{\epsilon}\sum_{\Delta_a>0}\left(\frac{1}{\Delta_a}\right)^{\frac{1}{\nu}}\right)$
	ε-LDP	$O\left(\frac{\log T}{\epsilon^2}\sum_{\Delta_a>0}\left(\frac{1}{\Delta_a}\right)^{\frac{1}{\nu}}+\max_a\Delta_a\right)$	$\Omega\left(\frac{\log T}{\epsilon^2}\sum_{\Delta_a>0}\left(\frac{1}{\Delta_a}\right)^{\frac{1}{\nu}}\right)$
Bounded/sub-Gaussian Reward (Instance-dependent Bound)	ε-DP	$O\left(\frac{K\log T}{\epsilon} + \sum_{\Delta_a>0} \frac{\log T}{\Delta_a}\right)$	$\Omega\left(\frac{K\log T}{\epsilon} + \sum_{\Delta_a>0} \frac{\log T}{\Delta_a}\right)$
	ε-LDP	$O\left(\frac{1}{\epsilon^2}\sum_{\Delta_a>0}\frac{\log T}{\Delta_a}+\Delta_a\right)$	$\Omega\left(\frac{1}{\epsilon^2}\sum_{\Delta_a>0}\frac{\log T}{\Delta_a}\right)$
Heavy-tailed Reward (Instance-independent Bound)	ε-DP	$O\left(\left(\frac{K\log T}{\epsilon}\right)^{\frac{V}{1+V}}T^{\frac{1}{1+V}}\right)$	_
	ε-LDP	$O\left(\left(\frac{K\log T}{\epsilon^2}\right)^{\frac{\nu}{1+\nu}} T^{\frac{1}{1+\nu}}\right)$	$\Omega\left(\left(\frac{K}{\epsilon^2}\right)^{\frac{\nu}{1+\nu}} \mathcal{T}^{\frac{1}{1+\nu}}\right)$
Bounded/sub-Gaussian Reward (Instance-independent Bound)	ε-DP	$O\left(\sqrt{KT\log T} + \frac{K\log T}{\epsilon}\right)$	$\Omega\left(\sqrt{KT} + \frac{K\log T}{\epsilon}\right)$
	ε-LDP	$O\left(\frac{\sqrt{KT\log T}}{\epsilon}\right)$	$\Omega(\frac{\sqrt{KT}}{\epsilon})$

• Here $\Delta_a \triangleq \mu^* - \mu_a$ is the mean reward gap of arm a.

- Introduction
 - Motivation
 - Problem Setting
 - Contributions
- 2 Results
 - Methods
 - Experiments

DP Robust UCB

Previous private MAB methods under different settings:

- bounded setting: Tree-based mechanism to privately calculate the sum of rewards and then modify UCB algorithm
- heavy-tailed setting: reward is unbounded so we first preprocess the rewards to make them bounded.

Non-private MAB with heavy-tailed rewards

• robust-UCB (Bubeck et al. 2013): combining the UCB algorithm with several robust mean estimators.

DP Robust UCB: Truncation technique, Tree-based mechanism, UCB and Laplacian mechanism

DP Robust UCB

Algorithm 1 DP Robust Upper Confidence Bound

Input: time horizon T, parameters ϵ, v, u .

- 1: Create an empty tree Tree_a for each arm $a \in [K]$.
- 2: Initialize pull number $n_a \leftarrow 0$ for each arm $a \in [K]$.
- 3: Denote B_n as $(\frac{\epsilon u n}{\log^{1.5} T})^{1/(1+v)}$ for any $n \in \mathbb{N}^+$.
- 4: **for** t = 1, ..., K **do**
- Pull arm t and observe a reward x_t .
- Update the pull number $n_t \leftarrow n_t + 1$.
- 7: Truncate the reward by $\widetilde{x}_t \leftarrow x_t \cdot \mathbb{I}_{|x_t| \leq B_{n_t}}$.
- Insert \widetilde{x}_t into Tree_t.
- 9: end for
- 10: **for** t = K + 1, ..., T **do**
- Obtain $\widehat{S}_a(t)$ for each $a \in [K]$ via Tree-based \longrightarrow Private sum of truncated Mechanism. rewards
- Pull arm 12:

$$a_t = \argmax_a \frac{\widehat{S}_a(t)}{n_a} + 18u^{\frac{1}{1+v}} (\frac{\log(2t^4)\log^{1.5+\frac{1}{v}}T}{n_a\epsilon})^{\frac{v}{1+v}} \blacktriangleright \text{ Robust UCB}$$

and observe the reward x_t .

- Update the pull number $n_{a_t} \leftarrow n_{a_t} + 1$. 13:
- Truncate the reward by $\widetilde{x}_t \leftarrow x_t \cdot \mathbb{I}_{|x_t| \leq B_{n_{a_t}}}$. \rightarrow Truncate reward 14:
- 15: Insert \widetilde{x}_t into Tree_{a_t}.
- 16: **end for**

Treea for each arm

Theorem (Upper Bound of DP Robust UCB)

Under our assumptions, for any $0<\epsilon\leq 1$ the instance-dependent expected regret of DP Robust UCB algorithm satisfies

$$\mathcal{R}_{T} \leq O\left(\sum_{a:\Delta_{a}>0} \left(\frac{\log^{2.5+\frac{1}{\nu}} T}{\epsilon} \left(\frac{u}{\Delta_{a}}\right)^{\frac{1}{\nu}} + \Delta_{a}\right)\right). \tag{2}$$

- Optimal rate of the regret in non-private version(Bubeck et al.,2013): $O(\sum_{a:\Delta_a>0} [\log T(\frac{u}{\Delta_a})^{\frac{1}{v}} + \Delta_a])$
- There is an additional factor of $\frac{\log^{1.5+\frac{1}{\nu}}T}{\epsilon}$.
- Whether it is possible to further improve the regret?

DP Robust SE

Algorithm 3 DP Robust Successive Elimination

```
Input: confidence \beta, parameters \epsilon, v, u.
  1: S \leftarrow \{1, \dots, K\}
                                                        Set all the arms as viable options
  2: Initialize: t \leftarrow 0, \tau \leftarrow 0.
 3: repeat
            \tau \leftarrow \tau + 1.
             Set \bar{\mu}_a = 0 for all a \in \mathcal{S}.
             r \leftarrow 0, D_{\tau} \leftarrow 2^{-\tau}.
            R_{\tau} \leftarrow \left[ u^{\frac{1}{v}} \left( \frac{24^{(1+v)/v} \log(4|\mathcal{S}|\tau^2/\beta)}{e^{(1+v)/v}} \right) + 1 \right].
            B_{\tau} \leftarrow \left(\frac{uR_{\tau}\epsilon}{\log(4|\mathcal{S}|\tau^2/\beta)}\right)^{1/(1+v)}.
             while r < R_{\tau} do
                                                                                                         Pull all the viable arms to
                   r \leftarrow r + 1.
10:
                                                                                                        get the same private
                   for a \in \mathcal{S} do
11:
                                                                                                         confidence interval around
12:
                          t \leftarrow t + 1.
                                                                                                        empirical rewards
                         Sample a reward x_{a,r}.
13:
14:
                         \widetilde{x}_{a,r} \leftarrow x_{a,r} \cdot \mathbb{I}_{\{|x_{a,r}| \leq B_{\tau}\}}.
15:
                    end for
             end while
16.
             For each a \in \mathcal{S}, compute \bar{\mu}_a \leftarrow (\sum_{l=1}^{R_{\tau}} \widetilde{x}_{a,l})/R_{\tau}.
17:
             Set \widetilde{\mu}_a \leftarrow \overline{\mu}_a + \operatorname{Lap}(\frac{2B_{\tau}}{B_{-\epsilon}}) for all a \in \mathcal{S}.
             \widetilde{\mu}_{\max} \leftarrow \max_{a \in S} \widetilde{\mu}_a.
             err_{\tau} \leftarrow u^{1/(1+v)} \left(\frac{\log(4|\mathcal{S}|\tau^2/\beta)}{R_{-\epsilon}}\right)^{v/(1+v)}
             for all viable arm a do
21:
22:
                    if \widetilde{\mu}_{max} - \widetilde{\mu}_a > 12err_{\tau} then
                                                                                    Eliminate the arms with sub-
23:
                          Remove arm a from S.
                                                                                    optimal empirical rewards
24.
                   end if
             end for
26: until |S| = 1

 Pull the arm in S in all remaining T − t rounds.
```

DP Robust SE

Theorem (DP Upper Bound)

In DP Robust SE algorithm, for sufficiently large T and any $\epsilon \in (0,1]$, the instance-dependent and instance-independent expected regret satisfies

$$\mathcal{R}_{\mathcal{T}} \leq O\left(\frac{u^{\frac{1}{1+\nu}}\log\mathcal{T}}{\epsilon}\sum_{\Delta_{a}>0}\left(\frac{1}{\Delta_{a}}\right)^{\frac{1}{\nu}} + \max_{a}\Delta_{a}\right), \mathcal{R}_{\mathcal{T}} \leq O\left(u^{\frac{\nu}{(1+\nu)^{2}}}\left(\frac{K\log\mathcal{T}}{\epsilon}\right)^{\frac{\nu}{1+\nu}}\mathcal{T}^{\frac{1}{1+\nu}}\right)$$

respectively.

Theorem (DP Instance-dependent Lower Bound)

There exists a heavy-tailed K-armed bandit instance with $u \leq 1$, $\mu_a \leq \frac{1}{6}$ and $\Delta_a \in (0, \frac{1}{12})$, such that for any ϵ -DP $(0 < \epsilon \leq 1)$ algorithm $\mathcal A$ whose expected regret is at most $T^{\frac{3}{4}}$, we have

$$\mathcal{R}_{T} \ge \Omega \left(\frac{\log T}{\epsilon} \sum_{\Delta_{a} > 0} \left(\frac{1}{\Delta_{a}} \right)^{\frac{1}{\nu}} \right). \tag{3}$$

- 4 ロ b 4 個 b 4 恵 b 4 恵 b - 恵 - 夕 9

LDP Robust SE

The basic idea is similar to DP Robust SE, while the algorithm now maintains private confidence interval for **each arm** via the perturbed rewards instead of the noisy average.

Theorem (LDP Upper Bound)

In LDP Robust SE algorithm. For any $\epsilon \in (0,1]$ and sufficiently large T, the instance-dependent expected regret satisfies

$$\mathcal{R}_{T} \leq O\left(\frac{u^{\frac{2}{v}}\log T}{\epsilon^{2}}\sum_{\Delta_{a}>0}\left(\frac{1}{\Delta_{a}}\right)^{\frac{1}{v}} + \max_{a}\Delta_{a}\right). \tag{4}$$

Moreover, the instance-independent expected regret satisfies

$$\mathcal{R}_{T} \leq O\left(u^{\frac{2}{1+\nu}} \left(\frac{K \log T}{\epsilon^{2}}\right)^{\frac{\nu}{1+\nu}} T^{\frac{1}{1+\nu}}\right),\tag{5}$$

where the $O(\cdot)$ -notations omit $\log \log \frac{1}{\Delta_1}$ terms.

Theorem (LDP Instance-dependent Lower Bound)

There exists a heavy-tailed K-armed bandit instance with $u \leq 1$ and $\Delta_a \triangleq \mu_1 - \mu_a \in (0, \frac{1}{5})$, such that for any ϵ -LDP $(0 < \epsilon \leq 1)$ algorithm whose regret $\leq o(T^\alpha)$ for any $\alpha > 0$, the regret satisfies

$$\liminf_{T \to \infty} \frac{\mathcal{R}_T}{\log T} \ge \Omega \left(\frac{1}{\epsilon^2} \sum_{\Delta_a > 0} (\frac{1}{\Delta_a})^{\frac{1}{\nu}} \right).$$

Theorem (LDP Instance-independent Lower Bound)

There exists a heavy-tailed K-armed bandit instance with the (1+v)-th bounded moment of each reward distribution is bounded by 1. Moreover, if T is large enough, for any the ϵ -LDP algorithm $\mathcal A$ with $\epsilon \in (0,1]$, the expected regret must satisfy

$$\mathcal{R}_{\mathcal{T}} \geq \Omega\left(\left(\frac{K}{\epsilon^2}\right)^{\frac{\nu}{1+\nu}}\mathcal{T}^{\frac{1}{1+\nu}}\right).$$

- Introduction
 - Motivation
 - Problem Setting
 - Contributions
- 2 Results
 - Methods
 - Experiments

Experimental Results in DP Model

- DPRUCB and DPRSE for an instance of 5 arms.
- Pareto distributions as the reward distributions with means being 0.9, 0.7, 0.5, 0.3, 0.1 in setting 1.

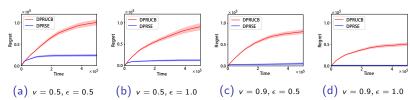
Figure: DP Model Setting 1



Experimental Results in DP Model

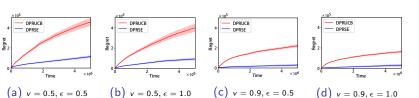
In setting 2, the means of each arm a are $\{0.9, 0.55, 0.3, 0.15, 0.1\}$.

Figure: DP Model Setting 2



In setting 3, the means of each arm a are $\{0.9, 0.85, 0.7, 0.45, 0.1\}$.

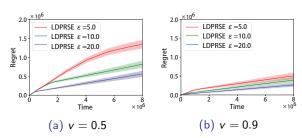
Figure: DP Model Setting 3



Experimental Results in LDP Model

We evaluate LDPRSE for the local DP model in the Setting 3 as the central DP model.

Figure: LDP Model



Open problems

- 1. Throughout the whole paper we need to assume both *u* and *v* are known. How to address a more practical case where they are unknown?
- For the setting of MAB with bounded reward, an UCB-based private algorithm can also attain an optimal regret guarantee. Whether it is possible to get an optimal DP variant of UCB algorithm for our problem.

Thank You!