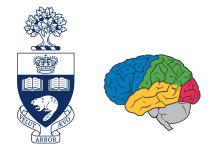
Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations

Winnie Xu, Ricky T.Q. Chen, Xuechen Li, David Duvenaud



Continuous-time generative models

Motivation: going beyond point estimation

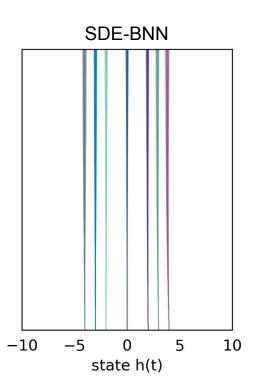
Implicit specification of model hyperparameters

Approach: scalable gradients x practical architecture

- Adaptive computation + O(1) memory training
- Tunable speed vs precision

Result: expressive models that quantify uncertainty

- Arbitrarily parameterized dynamics and likelihoods
- Low-variance gradients
- Uncertainty quantification



Stochastic transition dynamics

Fixed state size with arbitrary step size

Non-linear latent variable dynamics with noise at each step

Expressivity from an **implicit distribution** over functions

Get different trajectories by sampling noise and integrating through time

$$dz = f_{\theta}(z(t))dt \\ + \sigma_{\theta}(z(t))dB(t)$$
 diffusion
$$z(t_0)$$

Technicalities of going infinitely deep

Put neural nets in SDE dynamics functions to fit data!

Sample weights from approx. posterior and evaluate output in one SDESolve:

$$d \begin{bmatrix} w_t \\ h_t \end{bmatrix} = \begin{bmatrix} f_w(w_t, \phi) \\ f_h(h_t, w_t) \end{bmatrix} dt + \begin{bmatrix} I \\ \mathbf{0} \end{bmatrix} dB_t$$

Leverage advancements in numerical methods for stochastic control

Stochastic adjoint sensitivity method and Brownian Tree (Li et al. 2020)

Parameter uncertainty with SDEs

Activations h follow a random ODE

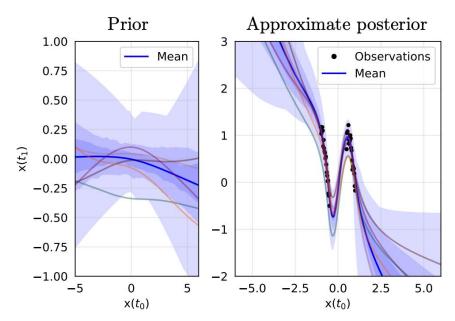
$$dh_t = f_h(h_t, w_t)$$

Prior on weights is an OU process

$$dw_t = -w_t dt + dB_t$$

Likelihood depends on activation at time 1

$$p(y \mid x, w) = \mathcal{N}(y \mid h_1, w)$$



Select expressiveness of the approximate posterior on weights

$$dw_t = f_w(w_t, \phi)dt + dB_t$$

SVI gradient variance reduction

To do variational inference in this **non-parametric model** class, we need an **unbiased** estimate between the prior and approx. posterior

Prior:

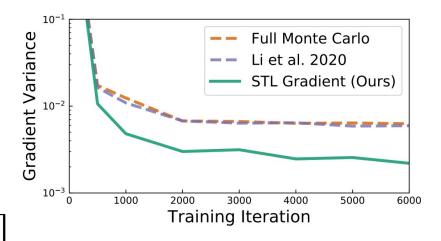
$$dz_p = f_{\theta}(z_t)dt + \sigma_{\theta}(z_t)dB(t)$$

Approximate posterior:

$$dz_q = f_{\phi}(z_t)dt + \sigma_{\theta}(z_t)dB(t)$$

ELBO(q):

$$\log p(y_i|x_i) - \mathbb{E}_{q(w|\phi)} \left[\frac{1}{2} \int \left| \frac{f_{\theta}(w_t) - f_{\phi}(w_t)}{\sigma_{\theta}(w_t)} \right|^2_2 dw \right]$$



"Sticking the Landing" for SDEs

- Approximate posterior q(z) can be arbitrarily close to true posterior p(z|x)
- Prevent moving in suboptimal direction when optimizing parameters w.r.t.
 ELBO now that information is not lost to gradient noise

$$\widehat{\mathrm{KL}}_{\mathrm{STL}} = \int_0^1 \frac{1}{2} \|u(w_t, t, \phi)\|_2^2 \, \mathrm{d}t + \int_0^1 u(w_t, t, \bot(\phi)) \, \mathrm{d}B_t$$

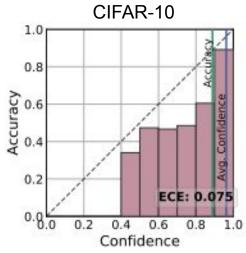
$$\mathrm{stop_gradient}$$

Method	Accuracy (%)	Negative Log-likelihood ($\times 10^{-4}$)	ELBO
SDE BNN	95.91 ± 0.2	1.17 ± 0.309	1.40 ± 0.2
SDE BNN (+STL)	96.89 ± 0.2	0.309 ± 0.15	1.183 ± 0.2

One ultimate architecture at scale

Variational posterior: a highly parameterized, nonlinear SDE that can recover the true posterior with sufficient model capacity.

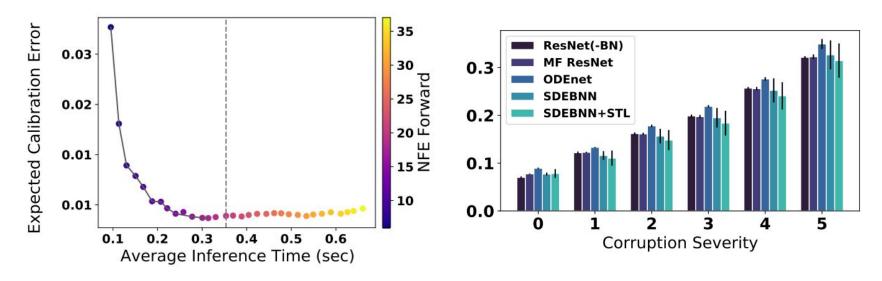
Ablation studies: 1D regression, MNIST, and CIFAR-10 classification using our variance-reduction trick and novel neural architecture.



Method	Posterior over Stochastic Process .	Flexible Approximate Posterior	Adaptive Computation	References
Bayes by Backprop	X	X	X	Blundell et al. (2015)
MCMC for BNNs	X	✓	X	(Neal, 1996; Wenzel et al., 2020; Izmailov
Bayesian Hypernets	X	1	X	Krueger et al. (2018)
BBVI for SDEs	1	Х	X	Ryder et al. (2018)
Bayesian Neural ODEs	×	v	1	Yıldız et al. (2019)
		^		Dandekar et al. (2020)
SDE-BNN	1	1	1	current work

Effectively learning reliability and robustness

Adjusting SDE-BNN solver tolerance at test time trades off computational speed for predictive performance



SDE-BNN evaluated on all 19 perturbations of CIFAR-10C benchmark.

Thank You.

Xuechen Li

Ricky T.Q. Chen

David Duvenaud

Paper: https://arxiv.org/pdf/2102.06559.pdf
Code: https://github.com/xwinxu/bayeSDE

Tweet: https://twitter.com/DavidDuvenaud/status/1453424027180179464

