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BIG challenge in Supervised Learning
▶ Supervised Learning often learns “spurious” correlations.

▶ Such correlations are easier to detect, but do not hold over data from other sources.
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BIG challenge in Supervised Learning

[www.medrxiv.org/content/10.1101/2020.09.13.20193565v2]

Can we design learning objectives that incentivize our models to
only learn correlations that hold over all data sources?
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Domain Generalization

Set of environments E . Each e ∈ E corresponds to a distribution De over X ×Y .

3 / 6



Domain Generalization

Set of environments E . Each e ∈ E corresponds to a distribution De over X ×Y .

Goal: min
f :X→R

max
e∈E

Le( f )

where, Le( f ) := E
(X,Y)∼De

ℓ( f (X), Y)

Example: Square loss ℓsq(ŷ, y) := 1
2 (ŷ − y)2 or Logistic loss ℓlog(ŷ, y) := log(1 + exp(−yŷ))
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where, Le( f ) := E
(X,Y)∼De

ℓ( f (X), Y)

Example: Square loss ℓsq(ŷ, y) := 1
2 (ŷ − y)2 or Logistic loss ℓlog(ŷ, y) := log(1 + exp(−yŷ))

What do we have access to?

▶ Finite set of training environments Etr ⊆ E : not sampled!
▶ Training sets Se sampled from De for e ∈ Etr.
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Empirical RiskMinimization
Empirical Risk Minimization (baseline): Mix the training data sources!

min
f :X→R

∑
e∈Etr

Le( f )
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Empirical RiskMinimization
Empirical Risk Minimization (baseline): Mix the training data sources!

min
f :X→R

∑
e∈Etr

Le( f )

Fails to generalize to unseen e ∈ E if spurious correlations

that hold over training environments do not hold over De.

4 / 6



Invariant RiskMinimization [Arjovsky, Bottou, Gulrajani, Lopez-Paz ’19]

min
f :X→R

∑
e∈Etr

Le( f )

Invariant Risk Minimization (IRM): Only allow predictors that are “invariant” over training environments.

▶ f = w ◦ φ for

representation φ : X → Z
predictor w : Z → R

▶ w is simultaneously optimal for all training environments.

∀ e ∈ Etr : w ∈ argmin
w:Z→R

Le(w ◦ φ)

subject to:
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Invariant Risk Minimization (IRM): Only allow predictors that are “invariant” over training environments.

▶ f = w ◦ φ for

representation φ : X → Z
predictor w : Z → R

▶ w is simultaneously optimal for all training environments.

∀ e ∈ Etr : w ∈ argmin
w:Z→R

Le(w ◦ φ)

subject to: f ∈ I(Etr)

in short:

Challenging Bi-Level Optimization Problem!
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IRMwith Linear w [Arjovsky, Bottou, Gulrajani, Lopez-Paz ’19]

min
f :X→R

∑
e∈Etr

Le( f )

Invariant Risk Minimization (IRM-Linear): Constrain w to be a linear predictor.

▶ f = w ◦ φ for

representation φ : X → Rd

linear predictor w : Rd → R

▶ w is simultaneously optimal for all training environments.

∀ e ∈ Etr : w ∈ argmin
w∈Rd

Le(⟨w, φ⟩)

subject to:
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Invariant Risk Minimization (IRM-Linear): Constrain w to be a linear predictor.

▶ f = w ◦ φ for

representation φ : X → Rd

linear predictor w : Rd → R

▶ w is simultaneously optimal for all training environments.

∀ e ∈ Etr : w ∈ argmin
w∈Rd

Le(⟨w, φ⟩)

subject to: f ∈ IS(Etr)

in short:

min
f :X→R

∑
e∈Etr

Le( f ) + λ ·
∣∣∣ ∂

∂wLe(w · f )|w=1

∣∣∣2 . . . (IRMv1)
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Our Contributions
Domain

Generalization
min

f
max
e∈E

Le( f )

IRM
min

f∈I(Etr)
∑

e∈Etr

Le( f )

IRMS
min

f∈IS (Etr)
∑

e∈Etr

Le( f )

IRMv1 min
f

∑
e∈Etr

Le( f ) + λ ·
∣∣∣ ∂

∂w Le(w · f )|w=1

∣∣∣2

ÎRMv1

▶ Empirical loss L̂e
▶ f = neural network
▶ Training with (S)GD
▶ Choose λ in IRMv1
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Most subsequent work interchangeably use

IRM, IRMS , IRMv1 and ÎRMv1.
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▶ Empirical loss L̂e
▶ f = neural network
▶ Training with (S)GD
▶ Choose λ in IRMv1

Most subsequent work interchangeably use

IRM, IRMS , IRMv1 and ÎRMv1.

If ÎRMv1 does not work in some example,

which step is to be blamed?
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Result #1: In a simple theoretical example
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▶ Because: IS (Etr) ) I(Etr).

Result #2: In another simple theoretical example:

▶ Training Envs correctly identify invariances I(Etr) = I(E).
▶ Yet, IRM chooses sub-optimal invariant predictor.

▶ Because: Loss of an invariant predictor need not be invariant.

Result #3: Establish (sufficient) conditions under which,

finite training environments capture right invariances:

I(Etr) = I(E)

IRM is a potentially powerful paradigm.
Making it practical needs further investigation.

Key Takeaway
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