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CMAB-PTA

• We consider combinatorial multi-armed bandit (CMAB) with probabilistically
triggered arms (PTAs) under the semi bandit feedback.
• e.g., cascading bandit and influence maximization bandits
• Classical Thompson sampling (TS) and upper confidence bound (UCB) based

algorithms do not take correlations between base arms into account.
• We use Gaussian processes (GPs) to model base arm outcomes and propose

Combinatorial GP-UCB (ComGP-UCB).
• ComGP-UCB enjoys sublinear regret and significantly outperforms classical TS

and UCB methods when base arms are correlated.
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Problem Formulation

• The learner chooses a subset of m base arms denoted by S(t) ∈ I at each
round t where I ⊆ 2[m] denotes the set of feasible super arms.
• Each base arm i ∈ {1, . . . ,m} has a context denoted by xi ∈ X .
• We assume there exists f : X → R where f is sampled from a GP and

f (xi ) = µi .
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ComGP-UCB

• ComGP-UCB forms an estimate of the expected base-arm outcomes, µ̄t
• The oracle knows the problem structure and plays the optimal super arm S

based on µ̄t
• Once the feedback is observed, ComGP-UCB updates the posterior distribution

of GP –exploiting the relevance between different arms– before the next round.
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ComGP-UCB
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Figure: ComGP-UCB
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Theoretical Bounds

Theorem
Given Lipschitz constant B, δ, ρ ∈ (0, 1), α ∈ [mT ], under Assumptions 1, 2, and 3,

and when
√

T >
m+ 2m

ρ2 Eµ[ 1
p∗ ]

δ , the cumulative regret of ComGP-UCB after round T
is upper bounded with at least 1− 2δ probability as follows,

P
{
Regµ(T ) ≤ 4mB

√
TβmTσ2

(1− ρ)p∗

+ 2mαB
√
βmT

}
≥ 1− 2δ.
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Theoretical Bounds

Theorem
Given δ ∈ (0, 1), C := 8B̃2

log(1+σ−2) , where B̃ is the TPM Lipschitz constant, and
under Assumptions 1, 2, and 4, the cumulative regret of ComGP-UCB after round T
is upper bounded with at least 1− δ probability as follows,

P
{
Regµ(T ) ≤

√
CmTβmTγ

PTA
T ,µ

}
≥ 1− δ.
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Comparison with Related Work

Combinatorial Gaussian Process Bandits with Probabilistically Triggered Arms

back of this bound is that it depends on 1/p∗, where
p∗ is the minimum triggering probability. In Wang
et al. (2017), a bound free of 1/p∗ is derived under
more strict assumptions on the expected reward func-
tion, called triggering probability modulated (TPM)
bounded smoothness. Moreover, Wang et al. (2017)
shows that the dependence on 1/p∗ is unavoidable in
general.

Table 1: Our Work in Comparison to Related Work

ALGO. PUBL. Regret Bound

CUCB (Chen et al., 2013) O(
∑

i log T/∆i)
CUCB1 (Chen et al., 2016) O(

∑
i log T/(pi∆i))

CUCB1 (Wang et al., 2017) O(
∑

i log T/∆i)
∗

CTS2 (Wang et al., 2018) O(
∑

i log T/∆i)
CTS1,2 (Hüyük et al., 2019) O(

∑
i log T/(pi∆i))

ComGP-UCB1,2 O
(
m
√

T log T
p∗

)
O
(√

mT log TγPTA
T,µ

)∗
∗With triggering probability modulated Lipschitz continuity
1PTA scenario considered
2Exact oracle used

γPTAT,µ denotes the pseudo-information gain term, pi is
the minimum non-zero triggering probability of base-
arm i, p∗ is the global non-zero minimum triggering
probability (p∗ := mini∈[m] pi), and ∆i is a problem
specific minimum gap between the rewards of optimal
super-arm and the arms that contain the ith base-arm.

GPs offer a powerful and convenient framework for
CMAB problems. The immediate advantage is that
GPs can model the dependencies between different base
arms’ expected outcomes via a kernel function. Com-
pared to other algorithms that assume independence
between different base arm outcomes, a GP bandit uses
every single base arm outcome observation to update
its body of information about the other base arms. Be-
sides, thanks to the analytical tractability and simple
update equations of GPs, it is easy to implement and
analyze such models.

In this work, we analyze the regret of ComGP-UCB,
a Gaussian process upper confidence bound algorithm
(Srinivas et al., 2010). We consider a CMAB-PTA
framework where the learner has access to an exact com-
putation oracle. We show that ComGP-UCB achieves
(O(

√
mT log TγPTAT,µ )) O(m

√
T log T/p∗) high proba-

bility regret bounds under (triggering probability mod-
ulated) Lipschitz continuity assumptions on the ex-
pected reward. Our bounds match the state-of-the-art
in terms of dependence on time (Chen et al., 2013,
Hüyük et al., 2020, Srinivas et al., 2010). Note that
one of our bounds includes pseudo-information gain.
This term is a function of the base arms’ triggering
probabilities and posterior variances and it captures

the information that can not be captured by the algo-
rithms which assume independence between base arm
outcomes. We elaborate on the pseudo-information
gain term, γPTAT,µ , in Sections 4 and 5.

The rest of the paper is organized as follows. Section
2 formulates the CMAB-PTA problem. Section 3 de-
scribes the ComGP-UCB algorithm. Section 4 analyzes
the regret of ComGP-UCB. Section 5 contains the nu-
merical results, and Section 6 presents the concluding
remarks. Proofs of the lemmas used and additional
results are provided in the supplementary material.

2 PROBLEM FORMULATION

We consider a sequential decision making problem with
time horizon T . The learner interacts with its en-
vironment through m base arms indexed by the set
[m] := {1, . . . ,m}, over rounds indexed by t ∈ [T ].
Every base arm i ∈ [m] is characterized by its context
vector xi ∈ X , where X := [0, 1]d is the d-dimensional
context set. In each round, the following actions take
place in order:

• The learner selects a super arm S(t) from a subset
of 2[m], denoted by I.

• The arms in S(t) may trigger other arms via a
stochastic triggering process, Dtrig, yielding a set
of base arms S′(t) which is a super set of S(t).
We denote the set of arms that can be possibly
triggered by the arms in S by S̃.

• The learner observes the individual outcomes of
each base arm in S′(t), and a reward that depends
on S′(t) (semi-bandit feedback).

2.1 Base Arm Outcomes

We model the expected base arm outcomes as a sample
from a Gaussian process defined on X (Rasmussen et al.,
2004). A Gaussian process GP (m(x), k(x,x′)) can be
thought of as a probability distribution over functions,
or an infinite-dimensional multivariate Gaussian dis-
tribution. It is characterized by its mean, m(x), and
kernel, k(x,x′), functions. GPs enjoy non-parametric
flexibility and analytical tractability properties. Using
GPs to model the expected outcome function, we gain
the power to exploit the dependencies between the ex-
pected outcomes of different base arms via the kernel
function.

At each round t, the environment draws a random
outcome vector Y (t) := (Y1(t), . . . , Ym(t)) from the
true outcome distribution D, which is unknown to the
learner, where Yi(t) is the outcome of base arm i at
round t. Yi(t) := µi + εi,t, where εi,t are i.i.d. zero
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Experiments

• Cascading bandit problem (item list recommendation)
• A synthetic linear problem
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Cascading Bandit
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Figure: High Correlation Scenario
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Figure: No Correlation Scenario
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Synthetic Linear Problem
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Figure: Kernel Hyper-parameter Mismatch and Sparse GPs
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