Comparing the Value of Labeled and Unlabeled Data in Method-of-Moments Latent Variable Estimation

Mayee Chen*, Ben Cohen-Wang*, Steve Mussmann, Fred Sala, Chris Ré

Problem Setup

Training data:



Q: What are the tradeoffs of using labeled vs unlabeled data?

<u>Our approach:</u> theoretically analyze error of latent variable graphical model with labeled vs unlabeled input.

 Focus on the impact of model misspecification and how to reduce its effects in method-of-moments estimation.

Model

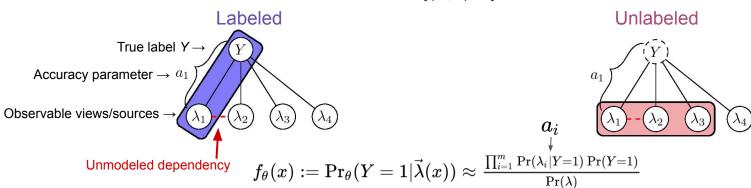
 n_L labeled points $\in \mathcal{X} imes \mathcal{Y}$ and/or n_U unlabeled points $\in \mathcal{X}$

+ *m* observable weak sources per point

$$ec{\lambda} = \lambda_1, \dots, \lambda_m$$

+ dependency graph ← misspecified!

$$G = \{(Y, \vec{\lambda}), E\}$$



Labeled: directly estimate a_i

Unlabeled: use method-of-moments (Fu et. al., 2020) - relies on conditional independence of triples of sources

Model misspecification: *d* unmodeled dependencies among *m* sources

Results

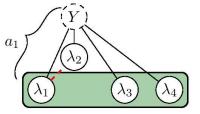
1. Error Decomposition for $f_{\theta}(x)$

 \mathcal{L}_{CE} = Irreducible error + other sampling noise + inference bias + parameter estimation error

For labeled data: goes to 0

For unlabeled data: $\mathcal{O}(d/m)$ asymptotic bias!

2. Correcting misspecification for unlabeled data:



 λ_1 , λ_2 , $\lambda_3 \rightarrow 0.73$ inconsistent λ_1 , λ_3 , $\lambda_4 \rightarrow 0.78 = \hat{a}_1$ Select **median** accuracy parameter λ_1 , λ_2 , $\lambda_4 \rightarrow 0.81$ inconsistent

Median correction yields consistent estimates of a_i :

Removes $\mathcal{O}(d/m)$ asymptotic bias and improves value of unlabeled data.

True for other method of moments estimators (Chaganty and Liang, 2014; Anandkumar et. al., 2012)

Thank you!

Check out our paper for more details on:

- Theoretical framework for choosing between and combining labeled and unlabeled data
- Empirical results from application to weak supervision:
 - Verify our error decomposition and median correction approach
 - A little bit of labeled data (1%) combined with unlabeled data gives us performance close to a fully labeled dataset!

Paper: https://arxiv.org/abs/2103.02761

Contact: Mayee Chen, <a href="missenger-missen

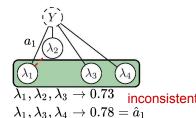
Results

Thm 1: Error Decomposition of Classifier $f_{\theta}(x)$

 \mathcal{L}_{CE} = Irreducible error + other sampling noise + inference bias + parameter estimation error

- Parameter estimation error goes to 0 (labeled) vs $\mathcal{O}(d/m)$ (unlabeled)
 - Labeled data generally better to use when model misspecification is unaddressed.

Correcting misspecification:



 $\lambda_1, \lambda_3, \lambda_4 o 0.78 = \hat{a}_1$ Select **median** $\lambda_1, \lambda_2, \lambda_4 o 0.81$ inconsistent accuracy parameter

- **Prop 1:** when enough unlabeled data, median correction yields consistent estimates of a_i and removes $\mathcal{O}(d/m)$ asymptotic bias \rightarrow unlabeled data more valuable/useful now
- True for general method of moments estimators that exploit conditional independence (Chaganty and Liang, 2014; Anandkumar et. al., 2012)
- ⇒ Theoretical framework for choosing between and combining labeled and unlabeled data
 - Application: weak supervision on binary sentiment classification (Maas et. al. 2011): median correction increases F1 score on unlabeled data by 3.31. Combining this with 1% labeled data comes within 0.75 points of F1 score if all samples were labeled.