Taming Heavy-tailed Features by Shrinkage

Ziwei Zhu, Wenjing Zhou

University of Michigan, Department of Statistics

April 2021

Motivation

Heavy-tailed data abound in modern data analytics.

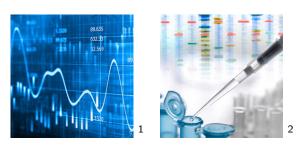




Figure 1: Real-life scenarios with heavy-tailed data

¹ http://www.algorithmica-technologies.com/en/case_studies/financial-data-analysis-for-contract-planning
2 https://www.chla.org/press-release/children-s-hospital-los-angeles-publishes-largest-genomic-study-covid-19-children-date
3 https://bernardmarr.com/default.asp?contentID=2126

Motivation

► Heavy-tailed features can aggravate the corruption on the response and jeopardize standard statistical approaches.

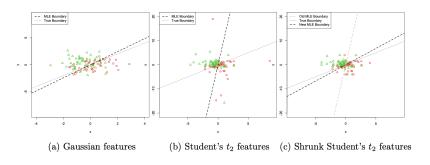


Figure 2: Logistic regression with 10% mislabeled data on different features

Generalized linear model (GLM)

Suppose we have n observations $\{(y_i, x_i)\}_{i=1}^n$, where y_i is the response and x_i is the feature vector valued in \mathbb{R}^d . Under the GLM with the canonical link, the probability density function of the response y_i is defined as

$$f_n(\mathbf{y}; \mathbf{X}, \boldsymbol{\beta}^*) = \prod_{i=1}^n f(y_i; \eta_i^*) = \prod_{i=1}^n \left\{ c(y_i) \exp\left(\frac{y_i \eta_i^* - b(\eta_i^*)}{\phi}\right) \right\},$$
(1)

where $\mathbf{y}=(y_1,\cdots,y_n)^{\top}$, $\mathbf{X}=(\mathbf{x}_1,\cdots,\mathbf{x}_n)^{\top}$, $\boldsymbol{\beta}^*\in\mathbb{R}^d$ is the regression coefficient vector, $\eta_i^*:=\mathbf{x}_i^{\top}\boldsymbol{\beta}^*$, $b(\cdot)$ is a known function that is twice differentiable with a positive second derivative and $\phi>0$ is the dispersion parameter.

► The response y is assumed to be generated from a particular distribution in an exponential family.

Corrupted generalized linear model (CGLM)

- For the *i*th observation, only corrupted response $z_i = y_i + \epsilon_i$ can be observed, where ϵ_i is random noise.
- ▶ The response is not limited within the exponential family.
- ▶ More real-world problems with complex structures:
 - the linear regression model with heavy-tailed noise
 - the logistic regression with mislabeled samples.
- ▶ The flexibility of the original GLM is significantly improved.

Shrinkage

Low-dimensional regime:
\ell_4-norm shrinkage on features, clipping on response

$$\widetilde{\mathsf{x}}_i := \frac{\min(\|\mathsf{x}_i\|_4, \tau_1)}{\|\mathsf{x}_i\|_4} \mathsf{x}_i$$

$$\widetilde{z}_i := \min(|z_i|, \tau_2)z_i/|z_i|$$

High-dimensional regime:
 elementwise shrinkage on features, clipping on response

$$\widetilde{x}_{ij} := \min(|x_{ij}|, \tau_1)x_{ij}/|x_{ij}|.$$

$$\widetilde{z}_i := \min(|z_i|, \tau_2)z_i/|z_i|$$

 $ightharpoonup au_1$ and au_2 are predetermined thresholds

ℓ_4 -norm ball

- ▶ The norm determines the strength of the constraint.
- \blacktriangleright ℓ_4 -norm shrinkage balances the bias and the variance.

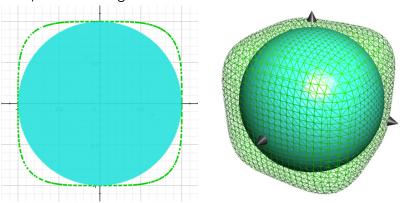


Figure 3: Unit Euclidean ball and ℓ_4 -norm ball in 2D and 3D.

Simulation: logistic regression with mislabeled data

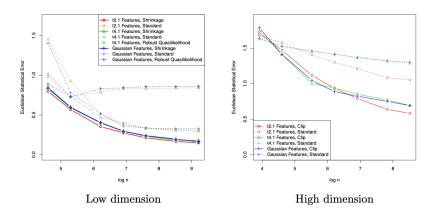


Figure 4: Logistic regression with 10% mislabeled data

Simulation: CNN on MNIST dataset

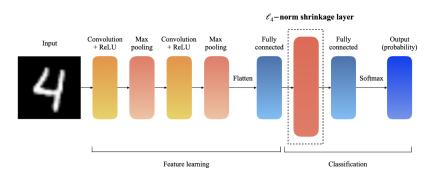


Figure 5: Architecture of the shrinkage convolutional neural network

Simulation: CNN on MNIST dataset

Table 1: Average testing misclassification rate (with standard error in the parentheses) on noisy MNIST images under mislabeling probability 40%

Noisy Pixel Ratio	Original CNN	Shrinkage CNN
0	3.64%(0.20%)	2.93%(0.09%)
0.1	$6.88\%_{(0.22\%)}$	$4.18\%_{(0.17\%)}$
0.2	$6.90\%_{(0.21\%)}$	4.37% _(0.16%)
0.4	$10.69\%_{(0.29\%)}$	$6.65\%_{(0.24\%)}$
0.6	18.82%(0.88%)	12.80%(0.65%)

Taming Heavy-tailed Features by Shrinkage

