

15 Second Summary

- Computing the marginal likelihood is computationally challenging, particularly when the dimension of the parameter space is large.
- Existing methods [3] are known to be slow and potentially inaccurate when MCMC samples are few in number or non-examples are few in
- Our algorithm uses MCMC samples to learn a high probability partition of the parameter space and then forms a determinist approximation over each of these partitions.

Problem Setup

Given data y, a likelihood function $p(y \mid u)$ indexed by u from d-dimensional parameter space \mathcal{U} , and a prior distribution p (we can write the marginal likelihood or evidence as,

$$p(y) = \int_{\mathcal{U}} p(y \mid u) p(u) du.$$

Definitions and Notation

Let
$$\gamma$$
 be a probability density defined on \mathbb{R}^d given by $-\Phi(u)$

$$\gamma(\boldsymbol{u}) = \frac{\boldsymbol{e}^{-\boldsymbol{r}(\boldsymbol{u})} \pi(\boldsymbol{u})}{\boldsymbol{\tau}}, \quad \boldsymbol{u} \in \mathcal{U} \subseteq \mathbb{R}^{d}$$

Typically, $\Phi(\cdot)$ corresponds to a negative log-likelihood functio and $\pi(\cdot)$ a prior distribution, so $\gamma(\cdot)$ is the corresponding poster distribution. The marginal likelihood has the following form,

$$\mathcal{Z}=\int_{\mathcal{U}}e^{-\Psi(u)}\,du,$$

where $\Psi(u) = \Phi(u) - \log \pi(u)$ is the negative log-posterior.

Our Approach

Generally, we can evaluate Ψ , but are unable to compute the integral in Eq. (1). Provided that we can sample from γ , we propose a two-step approach for solving this problem:

Step 1: Obtain a partition of the parameter space that identifies regions of the posterior that have posterior mass.

Step 2: Approximate Ψ over each of these partition sets

Using these steps together provides a way to approximate \mathcal{Z} computing a simplified version of the integral over partition set of the parameter space that have ideally taken into account t assumed non-uniform nature of the posterior distribution.

A Hybrid Approximation to the Marginal Likelihood Eric Chuu, Debdeep Pati, Anirban Bhattacharya

	Method	Experiments
r act. y tic	 Step 1: High Probability Partitioning of the Parameter Space Using samples u_j from γ, form (u_j, Ψ(u_j)), 1 ≤ j ≤ J Using (u_j, Ψ(u_j)) as covariate-response pairs as input to a regression tree model, we can a dyadic partition of U Define the compactification, A, of the parameter space U to be a bounding box using the range of posterior samples, 	 Truncated Multivariate Normal Model Linear regression with a truncated multivariate nor Unrestricted Covariance Matrices For data x₁,, x_n ^{iid} N_d(0, Σ), where Σ ∈ ℝ^{d×d}, w L(Σ) = (2π)^{-nd/2} det(where S = Σⁿ_{i=1} x_ix'_i. Consider a conjugate inverse- Gaussian Graphical Models Consider data x_i = x^{iid} N_d(0, Ω), where Ω is a
n a (u),	$A = \bigotimes_{l} \left[\min \left\{ u_{j}^{(l)} \right\}, \max \left\{ u_{j}^{(l)} \right\} \right], \ 1 \le j \le J, 1 \le l \le d,$ where $u_{j}^{(l)}$ is the <i>l</i> th component of u_{j} . Step 2: Piecewise Constant Approximation to Ψ $\widehat{\Psi}(u) = \sum_{k=1}^{K} c_{k}^{\star} \cdot \mathbb{1}_{A_{k}}(u),$	 Consider data x₁,, x_n ~ M_d(0, 32), where 32 is a framework for learning the dependence structure a (Ω, G). Conditional on G, we consider the hyper-in Approximate MCMC Samples Linear regression with a multivariate normal-invers We sample from a <i>mean field approximation</i> of the
on	$k=1$ where $\mathcal{A} = \{A_1, \ldots, A_K\}$ is a partition of A , i.e., $A = \bigcup_{k=1}^K A_k$ and $A_k \cap A_{k'} = \emptyset$ for all $k \neq k'$, and c_k^* is a representative value of Ψ within the partition set A_k . From step 1, we have rectangular partition sets of the form: $A_k = \prod_{l=1}^d [a_k^{(l)}, b_k^{(l)}]$. This leads to the <i>Hybrid Approximation</i> , $\int_{a_k} -\Psi(u) du = \int_{a_k} -\widehat{\Psi}(u) du = \sum_{k=1}^K -C^*$	HME - HME CAME WBSE BSE HybE -30 -20 -10 0
rior (1)	$\int_{A} e^{-\alpha(x)} du \approx \int_{A} e^{-\alpha(x)} du = \sum_{k=1} e^{-\alpha_{k}} \cdot \mu(A_{k}).$ Here, $\mu(B) = \int_{B} 1 du$ is the <i>d</i> -dimensional volume of a set <i>B</i> .	HME + HME
hv		Figure: Boxplots of the error (truth - estimate). For the tMVN exaright), $\Sigma \in \mathbb{R}^{4 \times 4}$, with 10 free parameters. For the HIW example (the approximate MVN-IG example (bottom right), $(\beta, \sigma^2) \in \mathbb{R}^{10}$. (warious competing estimators: Harmonic Mean Estimator (HME), (Warped) Bridge Sampling Estimator (WBSE, BSE).
ets he	Figure: We draw samples from a density of the form $\gamma(u) \propto \exp(-nu_1^2 u_2^2)\pi(u)$, where $u \in [0, 1]^2$ and $\pi(\cdot)$ is the uniform measure on $[0, 1]^2$. Using these samples as input for CART [1], we form the following partition over the parameter space.	 [1] L. Breiman, "Classification and regression trees," 1984. [2] A. P. Dawid and S. L. Lauritzen, "Hyper markov laws in the statistical analy pp. 1272–1317, 1993. [3] N. Friel and J. Wyse, "Estimating the evidence - a review," <i>Statistica Neerl</i>
		[ericchu

Texas A&M University Department of Statistics

rmal (tMVN) prior on β

ve have the following likelihood $(\Sigma)^{-n/2}e^{-\operatorname{tr}(\Sigma^{-1}S)/2}.$ -Wishart (IW) prior on Σ , $\mathcal{W}^{-1}(\Lambda, \nu)$.

sparse precision matrix. A probabilistic and the graph G requires a prior distribution for nverse Wishart (HIW) prior [2] for Ω

ample (top left), $\beta \in \mathbb{R}^{20}$. For the IW example (top (bottom left), $\Omega \in \mathbb{R}^{5 imes 5}$, with 10 free parameters. For Other than the Hybrid Estimator (HybE), we considered Corrected Arithmetic Mean Estimator (CAME),

ysis of decomposable graphical models," The Annals of Statistics,

landica, vol. 66, no. 3, p. 288–308, 2012.