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15 Second Summary

§ Computing the marginal likelihood is computationally
challenging, particularly when the dimension of the parameter
space is large.

§ Existing methods [3] are known to be slow and potentially
inaccurate when MCMC samples are few in number or non-exact.

§ Our algorithm uses MCMC samples to learn a high probability
partition of the parameter space and then forms a deterministic
approximation over each of these partitions.

Problem Setup

Given data y , a likelihood function p
`

y | u
˘

indexed by u from a
d -dimensional parameter space U , and a prior distribution p puq,
we can write the marginal likelihood or evidence as,

p
`

y
˘

“

ż

U
p
`

y | u
˘

p puq du.

Definitions and Notation

Let γ be a probability density defined on Rd given by

γpuq “
e´Φpuq πpuq

Z
, u P U Ď Rd .

Typically, Φp¨q corresponds to a negative log-likelihood function
and πp¨q a prior distribution, so γp¨q is the corresponding posterior
distribution. The marginal likelihood has the following form,

Z “

ż

U
e´Ψpuq du, (1)

where Ψpuq “ Φpuq ´ log πpuqq is the negative log-posterior.

Our Approach

Generally, we can evaluate Ψ, but are unable to compute the
integral in Eq. (1). Provided that we can sample from γ, we
propose a two-step approach for solving this problem:

Step 1: Obtain a partition of the parameter space that
identifies regions of the posterior that have posterior mass.

Step 2: Approximate Ψ over each of these partition sets

Using these steps together provides a way to approximate Z by
computing a simplified version of the integral over partition sets
of the parameter space that have ideally taken into account the
assumed non-uniform nature of the posterior distribution.

Method

§ Step 1: High Probability Partitioning of the Parameter
Space

Ź Using samples uj from γ, form puj,Ψpujqq, 1 ď j ď J

Ź Using puj,Ψpujqq as covariate-response pairs as input to a
regression tree model, we can a dyadic partition of U

Ź Define the compactification, A, of the parameter space U to
be a bounding box using the range of posterior samples,

A “ bl

„

min
!

u
plq
j

)

,max
!

u
plq
j

)



, 1 ď j ď J , 1 ď l ď d ,

where u
plq
j is the lth component of uj .

§ Step 2: Piecewise Constant Approximation to Ψ

xΨpuq “
K
ÿ

k“1

c‹k ¨ 1Ak
puq,

where A “ tA1, . . . ,AK u is a partition of A, i.e., A “
ŤK
k“1 Ak

and Ak X Ak 1 “ H for all k ‰ k 1, and c‹k is a representative value
of Ψ within the partition set Ak.

From step 1, we have rectangular partition sets of the form:

Ak “
śd

l“1ra
plq
k , b

plq
k s. This leads to the Hybrid Approximation,

ż

A
e´Ψpuq du «

ż

A
e´

pΨpuq du “

K
ÿ

k“1

e´c
‹
k ¨ µpAkq.

Here, µpB q “
ş

B 1 du is the d -dimensional volume of a set B .

Figure: We draw samples from a density of the form γpuq 9 expp´nu2
1u

4
2qπpuq,

where u P r0, 1s2 and πp¨q is the uniform measure on r0, 1s2. Using these samples
as input for CART [1], we form the following partition over the parameter space.

Experiments

§ Truncated Multivariate Normal Model
Ź Linear regression with a truncated multivariate normal (tMVN) prior on β

§ Unrestricted Covariance Matrices
Ź For data x1, . . . , xn

iid
„ Nd p0,Σq, where Σ P Rdˆd , we have the following likelihood

L
`

Σ
˘

“ p2πq´nd{2 detpΣq´n{2e´ trpΣ´1Sq{2,

where S “
řn
i“1 xix

1
i . Consider a conjugate inverse-Wishart (IW) prior on Σ, W´1

pΛ, νq.
§ Gaussian Graphical Models
Ź Consider data x1, . . . , xn

iid
„ Nd p0,Ωq, where Ω is a sparse precision matrix. A probabilistic

framework for learning the dependence structure and the graph G requires a prior distribution for
pΩ,G q. Conditional on G , we consider the hyper-inverse Wishart (HIW) prior [2] for Ω

§ Approximate MCMC Samples
Ź Linear regression with a multivariate normal-inverse-gamma (MVN-IG) prior on pβ, σ2

q

Ź We sample from a mean field approximation of the posterior distribution

Figure: Boxplots of the error (truth - estimate). For the tMVN example (top left), β P R20. For the IW example (top
right), Σ P R4ˆ4, with 10 free parameters. For the HIW example (bottom left), Ω P R5ˆ5, with 10 free parameters. For
the approximate MVN-IG example (bottom right), pβ, σ2

q P R10. Other than the Hybrid Estimator (HybE), we considered
various competing estimators: Harmonic Mean Estimator (HME), Corrected Arithmetic Mean Estimator (CAME),
(Warped) Bridge Sampling Estimator (WBSE, BSE).
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