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» Computing the marginal likelihood is computationally » Step 1: High Probability Partitioning of the Parameter » Truncated Multivariate Normal Model
challenging, particularly when the dimension of the parameter Space ~ Linear regression with a truncated multivariate normal (tMVN) prior on (3
space is large. ~ Using samples u; from ~, form (u;, V(u))), 1 <j < J » Unrestricted Covariance Matrices
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Emstmg methods [3] are known to be S|OYV and potentially ~ Using (u;, W(u;)) as covariate-response pairs as input to a ~ For data xi,...,x, ~ Ny0, L), where ¥ ¢ R?*“ we have the following likelihood
inaccurate when MCMC samples are few in number or non-exact.

regression tree model, we can a dyadic partition of U LX) = (27T)_”“’/2 det(Z)_”/ze_”(Z_ls)/z,

~ Define the compactification, A, of the parameter space U to where S = 37, x;x/. Consider a conjugate inverse-Wishart (IW) prior on ¥, WA, v).
be a bounding box using the range of posterior samples, - Gaussian Graphical Models

o 0 | ~ Consider data xi, ..., X, id N0, €2), where €2 is a sparse precision matrix. A probabilistic
Problem Setup A= [mm {Uj }a maX{Uj H , 1<j<Jd 1< /<d, framework for learning the dependence structure and the graph G requires a prior distribution for
) (1) - (€2, G). Conditional on G, we consider the hyper-inverse Wishart (HIW) prior [2] for
Given data y, a likelihood function p (y | u) indexed by u from a where ;" is the /th component of v;. . Approximate MCMC Samples
d-dimensional parameter space I/, and a prior distribution p (u), - Step 2: Piecewise Constant Approximation to V ~ Linear regression with a multivariate normal-inverse-gamma (MVN-IG) prior on (3, 0%)
we can write the marginal likelihood or evidence as, p

» Our algorithm uses MCMC samples to learn a high probability
partition of the parameter space and then forms a deterministic
approximation over each of these partitions.

~ We sample from a mean field approximation of the posterior distribution
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where A = {Ay, ..., Ak} is a partition of A, i.e., A= U;_; A CAME.
and Ax n Ay = o for all k = k', and ¢ is a representative value
of W within the partition set Ay.
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Let v be a probability density defined on R given by
e ®) T(U)

Z
Typically, ®(-) corresponds to a negative log-likelihood function J e VW) dy ~ J
A

and 7(-) a prior distribution, so (.) is the corresponding posterior A
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From step 1, we have rectangular partition sets of the form:
, uelc R, A = Hle[a,((/), b,((/)]. This leads to the Hybrid Approximation, HybE- HybE-
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distribution. The marginal likelihood has the following form, Here, 1(B) = §g 1 du is the d-dimensional volume of a set B.
Z fu e VW dy, (1)

where V(u) = ®(u) — log m(u)) is the negative log-posterior.

Our Approach | | :|||
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Generally, we can evaluate W, but are unable to compute the | Aln p(y) Aln p(y)

integral in Eq. (1). Provided that we can sample from ~, we
propose a two-step approach for solving this problem:

Figure: Boxplots of the error (truth - estimate). For the tMVN example (top left), 5 € R?. For the IW example (top
right), X € R*** with 10 free parameters. For the HIW example (bottom left), Q e R>*°, with 10 free parameters. For
Step 1: Obtain a partition of the parameter space that the approximate MVN-IG example (bottom right), (13, 0°) € R'Y. Other than the Hybrid Estimator (HybE), we considered

various competing estimators: Harmonic Mean Estimator (HME), Corrected Arithmetic Mean Estimator (CAME),
(Warped) Bridge Sampling Estimator (WBSE, BSE).

identifies regions of the posterior that have posterior mass.

Step 2: Approximate W over each of these partition sets

Using these steps together provides a way to approximate Z by Figure: We draw samples from a density of the form ~y(u) o exp(—nu?u3)m(u), References
computing a simplified version of the integral over partition sets § where u e [0,1]* and 7(-) is the uniform measure on [0, 1]°. Using these samples
of the parameter space that have ideally taken into account the as input for CART [1], we form the following partition over the parameter space.
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