Designing Transportable Experiments Under S-Admissability

My Phan¹ David Arbour^{*2} Drew Dimmery^{*3} Anup Rao^{*2} myphan@cs.umass.edu darbour26@gmail.com drewd@fb.com anuprao@adobe.com

> ¹ UMass - Amherst ² Adobe Research ³ Facebook Core Data Science *equal contribution

Motivation

(a) The Metaketa Initiative's study sites

Experimental samples in practice:

(b) Google Play's Beta program

- Distinct from the population of interest, e.g., tests can be performed in **one country** and we wish to generalize to the whole world
- A subpopulation of the population of interest, e.g., beta testers of a product

Key Question: How can we design experiments on our sample that will generalize?

Designing Transportable Experiments Under S-Admissability

- Two populations
 - Source population (*p_s*) where we can experiment
 - Target population (p_T) where we want to understand effects
- Design Phase. Given covariates X from the Source , we are free to assign treatments, A
- Run the experiment in the Source
- Analysis Phase.
 - Observe outcomes *Y* from the Source
 - Estimate the average treatment effect (ATE) in the Target

- Previous works: do not consider the Target distribution in the design phase.
- Our work: considers the Target distribution in the design phase.

Assumption

 $p_S(Y|X) = p_T(Y|X).$

The above assumption corresponds to S-admissibility.

Assumption

$$Y^1 = X^T \beta_1 + noise$$
 $Y^0 = X^T \beta_0 + noise$

Assumption

Overlap between source and target distributions, i.e., $p_T(X) > 0 \implies p_S(X) > 0$.

Assumption

The density ratio (weight) $p_T(X)/p_S(X)$ is known.

Designing Transportable Experiments Under S-Admissability

- Rerandomization:
 - Repeatedly randomize treatment assignments until a criteria (balance) is satisfied
- Importance-weighted estimator \rightarrow unbiased estimator for the Target's ATE.
- Make the average observed features in the Treatment and Control similar ("balance")
 - Source Balance: make the users balance according to the Source
 - Target Balance: using importance weights, make the users balance according to the Target \rightarrow reduces variance and achieves lower variance than Source Balance.

Simulations

Distance between source and target

Designing Transportable Experiments Under S-Admissability

Sample size

Designing Transportable Experiments Under S-Admissability

Thank You!

My Phan myphan@cs.umass.edu