Variational Selective Autoencoder: Learning from Partially-Observed Heterogeneous Data

Yu Gong^{1,2}, Hossein Hajimirsadeghi¹, Jiawei He¹, Thibaut Durand¹, Greg Mori^{1,2}

¹Borealis Al ²Simon Fraser University

Presenter: Yu Gong

Motivation

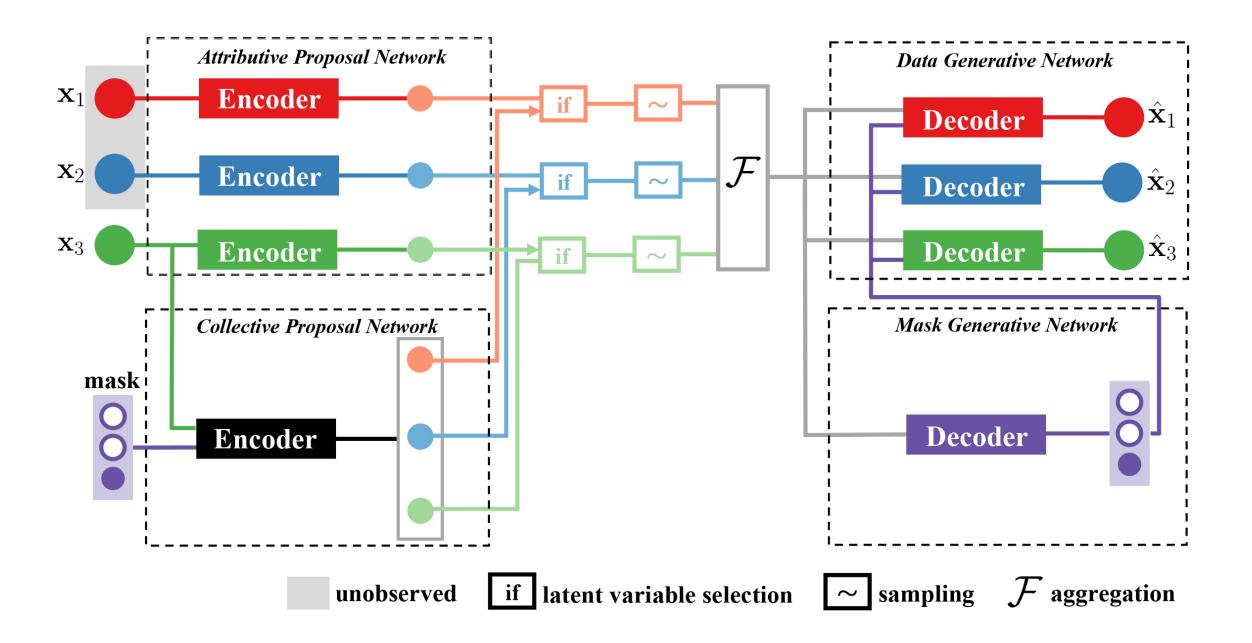
- Incomplete data are often associated with heterogeneity
- Data are incomplete even during training

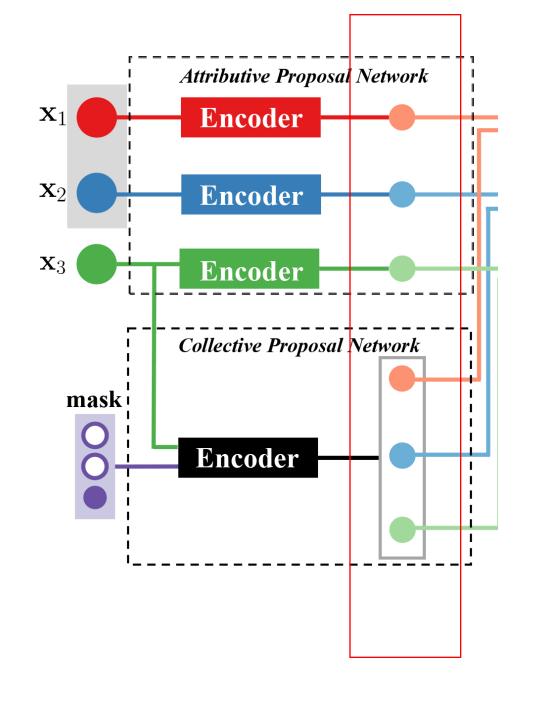
Background

Missingness Mechanism

 x_o (observed data), x_u (unobserved data), m (mask)

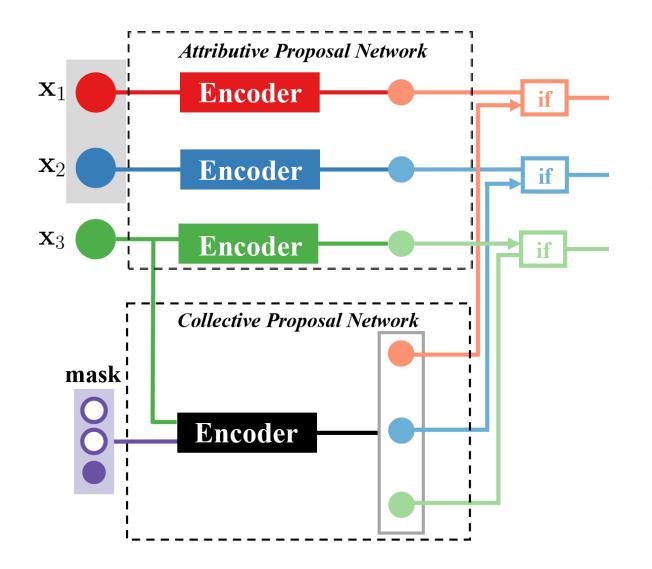
- ightharpoonup Missing at completely random (MCAR): $p(\mathbf{m}|\mathbf{x_o}, \mathbf{x_u}) = p(\mathbf{m}|\mathbf{x_o})$
- ightharpoonup Missing at random (MAR): $p(\mathbf{m}|\mathbf{x_o}, \mathbf{x_u}) = p(\mathbf{m}|\mathbf{x_u})$
- ightharpoonup Not Missing at random (NMAR): $p(\mathbf{m}|\mathbf{x_o},\mathbf{x_u}) = p(\mathbf{m}|\mathbf{x_u})$ or $p(\mathbf{m}|\mathbf{x_o},\mathbf{x_u})$


Background


Variational Autoencoder

$$\log p(\mathbf{x}) \ge \mathcal{L}_{\theta,\phi}(\mathbf{x}) = \underbrace{\mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})]}_{\text{Conditional Log-Likelihood}} - \underbrace{D_{\text{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))}_{\text{KL Regularizer}}$$

Proposed: Variational Selective Autoencoder


$$\log p(\mathbf{x}, \mathbf{m}) \ge \mathcal{L}_{\phi, \psi, \theta, \epsilon}(\mathbf{x}, \mathbf{m}) = \underbrace{\mathbb{E}_{\mathbf{z} \sim q_{\phi, \psi}(\mathbf{z} | \mathbf{x}, \mathbf{m})}[\log p_{\theta, \epsilon}(\mathbf{x}, \mathbf{m} | \mathbf{z})]}_{\text{cond. LL}} - \underbrace{D_{\text{KL}}(q_{\phi, \psi}(\mathbf{z} | \mathbf{x}, \mathbf{m}) || p(\mathbf{z}))}_{\text{KL Regularizer}},$$

Factorization assumption

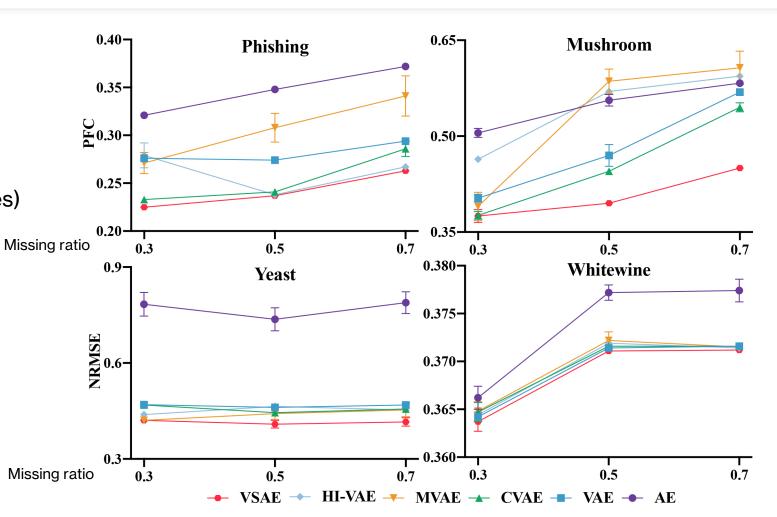
$$p(\mathbf{z}) = \prod_{i=1}^{M} p(\mathbf{z}_i), \qquad q(\mathbf{z}|\mathbf{x}, \mathbf{m}) = \prod_{i=1}^{M} q(\mathbf{z}_i|\mathbf{x}, \mathbf{m}).$$

Selective Proposal Distribution

$$q_{\phi,\psi}(\mathbf{z}_i|\mathbf{x},\mathbf{m}) = \begin{cases} q_{\phi}(\mathbf{z}_i|\mathbf{x}_i) & \text{if } m_i = 1\\ q_{\psi}(\mathbf{z}_i|\mathbf{x}_o,\mathbf{m}) & \text{if } m_i = 0 \end{cases}$$

Expected ELBO over unobserved attributes

$$\mathcal{L}'_{\phi,\psi,\theta,\epsilon}(\mathbf{x_o},\mathbf{m}) = \mathbb{E}_{\mathbf{x_u}}[\mathcal{L}_{\phi,\psi,\theta,\epsilon}(\mathbf{x_o},\mathbf{x_u},\mathbf{m})]$$


Data imputation under MCAR setting

Dataset: *UCI repository*

Metric:

PFC (portion of falsely classified attributes)

NRMSE (normalized RMSE)

Data imputation under non-MCAR setting

Dataset: Yeast, Whitewine

Metric: NRMSE (normalized RMSE)

	Method	MAR	NMAR
Yeast	MIWAE VSAE (ours)	$egin{array}{l} 0.475 \pm 0.005 \ 0.472 \pm 0.006 \end{array}$	0.456 ± 0.036 0.425 ± 0.007
Whitewine	MIWAE VSAE (ours)	$0.3834 \pm \Delta \ {f 0.3825} \pm {f \Delta}$	$0.3723 \pm \Delta \ {f 0.3717 \pm \Delta}$

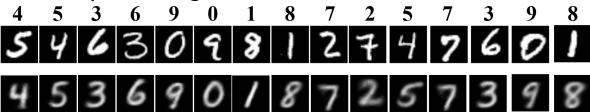
Synthesize non-MCAR:

MAR: 25% attributes are default observed, then sample the remaining

mask from sigmoid function.

NMAR: sample the mask for each attribute by applying sigmoid.

Dataset: MNIST + MNIST bimodal


Metric: MSE

Synthesize multi-modal dataset: MNIST as {(0,9),(1,8),(2,7),(3,6),(4,5)}

Data generation

Data imputation given one attribute

Dataset: Fashion MNIST, CMU-MOSI

Metric: MSE

	${f Fashion MNIST} + {f label} \; ({f PFC})$		$\mathbf{MNIST} + \mathbf{MNIST}$		CMU-MOSI		
Attribute type	Image	Label	Digit-1	Digit-2	Text	Audio	Image
AE	0.1105 ± 0.001	0.366 ± 0.01	$0.1077 \pm \Delta$	$0.1070 \pm \Delta$	0.035 ± 0.003	0.224 ± 0.025	0.019 ± 0.003
VAE	$0.0885 \pm \Delta$	0.411 ± 0.01	$0.0734 \pm \Delta$	$0.0682 \pm \Delta$	$0.034 \pm \Delta$	0.202 ± 0.003	$\boldsymbol{0.017 \pm \Delta}$
CVAE w/ mask	$0.0887 \pm \Delta$	0.412 ± 0.01	$0.0733 \pm \Delta$	$0.0679 \pm \Delta$	$0.043 \pm \Delta$	0.257 ± 0.002	$0.020 \pm \Delta$
MVAE	0.1402 ± 0.026	0.374 ± 0.07	$0.0760 \pm \Delta$	$0.0802 \pm \Delta$	$0.44 \pm \Delta$	0.213 ± 0.001	$0.025 \pm \Delta$
HI-VAE	0.1575 ± 0.006	0.405 ± 0.01	$0.0772 \pm \Delta$	$0.0725 \pm \Delta$	$0.047 \pm \Delta$	0.211 ± 0.005	$0.0267 \pm \Delta$
VSAE (ours)	$0.0874 \pm \boldsymbol{\Delta}$	0.356 ± 0.01	$\boldsymbol{0.0712 \pm \Delta}$	$0.0663 \pm \Delta$	$0.033 \pm \boldsymbol{\Delta}$	$\boldsymbol{0.200 \pm \Delta}$	$\boldsymbol{0.017 \pm \Delta}$